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We compute the structural energies, elastic constants, and stacking fault energies, and investigate the phase
stability of monoborides with different compositions (X1

1−xX
2
x)B (X = Ti/Fe/Mo/Nb/V) using density functional

theory in order to search for Ti monoborides with improved mechanical properties. Our computed Young’s
modulus and Pugh’s modulus ratio, which correlate with stiffness and toughness, agree well with predictions
from Vegard’s law with the exceptions of mixed monoborides containing Mo and Fe. Among all the monoborides
considered in this paper, TiB has the smallest Pugh’s ratio, which suggests that the addition of solutes can improve
the toughness of a Ti matrix. When X1B and X2B are respectively most stable in the B27 and Bf structures,
the mixed monoborides (X1

1−xX
2
x)B have a lower or similar stacking fault energy than TiB and could therefore

improve the ductility of the Ti matrix. Among all (X1
0.5X

2
0.5)B, mixed (Ti0.5Mo0.5)B and mixed (Ti0.5V0.5)B have

a higher Young’s modulus, a higher Pugh’s ratio, and a smaller stacking fault energy than TiB. We also construct
phase diagrams and find large solubility limits for solid solutions containing Ti compared to those containing Fe.
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I. INTRODUCTION

Titanium alloys exhibit high hardness and corrosion re-
sistance with low density, which makes them advantageous
for aerospace and biomedical applications [1–3]. The strength
and hardness of Ti alloys have been improved using grain
refinement by precipitation formation [4]. Boron additions to
Ti form TiB whiskers which improve the strength of Ti-matrix
composites as the fraction of the TiB whiskers increases
[4,5]. However, Ti alloys require further improvements to
toughness for practical applications. Thus, solutes such as Fe,
Mo, Nb, and V are added to stabilize the body-centered-cubic
β-Ti phase [3,6,7], which has a higher toughness than the
hexagonal-close-packed α-Ti phase. These solutes react to
form ternary phases which could have higher stiffness and
toughness compared to Ti monoborides. Monoborides with an
improved toughness can directly be used as reinforcements
within a Ti matrix [8] or as bulk ceramic phases [9].
However, it is difficult to measure the mechanical properties
of Ti monoborides experimentally due to their needlelike
microstructure [5], so we need a computational approach to
optimize the properties of monoboride systems.

Many studies have investigated the mechanical properties
of transition-metal monoborides XB (X = Ti/Fe/Mo/Nb/V)
in their most stable crystal structure (FeB or CrB) [10–12],
however, few studies [13,14] account for both crystal structures
even though they are commonly observed in the form of
stacking faults [7,15]. The FeB crystal structure has the
Strukturbericht designation B27 (space group Pnma, No.
62), and the CrB crystal structure has the Strukturbericht
designation Bf (space group Cncm, No. 63). These B27 and
Bf structures are equiatomic phases with the same density
[16]. Density functional theory (DFT) studies [11–13] com-
puted the elastic constants of transition-metal monoborides
and found that the strong interaction between boron atoms
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contributes significantly to the high stiffness. There are few
DFT studies either on the structural properties or phase
stabilities for ternary boride alloys such as (Ti,Nb)B [17] and
transition-metal diboride [18] using a special quasirandom
structure (SQS) method and showed reasonable agreement
with experiments. Yeung et al. experimentally measured the
structural and mechanical properties of (W,Ta)B monoborides
with different compositions and found that (W0.5Ta0.5)B has an
enhanced hardness [19]. Many experimental studies focused
on phase stabilities and suggested isothermal phase diagrams
for transition-metal ternary boride systems such as Ti-V-B,
Ti-Mo-B, and Ti-Nb-B [6,20,21]. However, we still need to
understand the relations between the stiffness, toughness,
ductility, and phase stability of ternary phases to design
thermodynamically stable Ti monoborides with a high Young’s
modulus, high Pugh’s ratio, and low stacking fault energies.

We present DFT calculations of the mechanical proper-
ties and phase stability of monoborides (X1

1−xX
2
x)B (X =

Ti/Fe/Mo/Nb/V). We study the various compositions of mixed
monoborides using SQS for both B27 and Bf structures. The
Young’s modulus E measures the stiffness of a material which
reflects the bonding strength within the material. We expect
that the toughness (resistance to open a crack) and the ductility
(ease of slip) of materials are correlated with Pugh’s ratio
[22] B/G and stacking fault energy (SFE) [23], respectively.
Our computed E and B/G agree well with predictions from
Vegard’s law, with the exceptions of monoborides containing
Mo and Fe. The computed stable SFEs of XB monoborides
agree well with the axial next-nearest-neighbor Ising (ANNNI)
model [24], and we assess the SFEs of mixed monoborides
using this approximation. We also compute phase diagrams
between different monoborides and find large solubility limits
for Ti-containing monoborides compared to those containing
Fe.

This paper is organized as follows: Section II describes the
DFT computational details, Voigt-Reuss-Hill (VRH) approx-
imations for polycrystalline elastic moduli, and the ANNNI
model. Section III A compares the computed elastic moduli
and Pugh’s ratio of monoborides with the predictions from
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Vegard’s law and Sec. III B discusses the phase stability of
mixed monoborides. Section III C investigates the stacking
fault energies of monoborides for both B27 and Bf structures.
Section IV provides further discussion and conclusions.

II. COMPUTATIONAL DETAILS

We perform density functional theory calculations using
the Vienna ab initio simulation package (VASP) [25,26].
We use the projector-augmented wave (PAW) potentials
generated by Kresse [27] with the Perdew-Wang91 (PW91)
exchange-correlation functional [28]. The core electron
configuration of the PAW potential we consider for each
element is as follows: B = [He]2s2, Ti = [Mg]3p63d24s2,
V= [Mg]3p63d34s2, Fe= [Ar]3d64s2, Nb= [Zn]4p64d45s1,
and Mo = [Zn]4p64d55s1. A plane-wave energy cutoff
of 520 eV ensures an energy convergence of less than
1 meV/atom. A 12 × 8 × 8 and a 8 × 12 × 8 Monkhorst-Pack
[29] k-point grid integrates the band structure over the
Brillouin zone of the 1 × 3 × 2 and 2 × 1 × 3 supercells (48
atoms) of the B27 and Bf structures, respectively. We employ
Methfessel-Paxton [30] smearing with an energy width of
0.15 eV. The force on each atom in the relaxed supercells is less
than 5 meV/Å. We generate SQSs for mixed borides using the
ATAT program [31] and all the calculations for Fe-containing
systems are spin polarized. We compute the nine independent
elastic stiffness coefficients for orthorhombic monoborides
by applying strains with magnitudes ranging from −0.4%
to 0.4% with a 0.1% interval, relaxing the atomic degrees of
freedom while keeping the cell volume fixed and fitting the
stress response to strain [17]. The elastic stiffness coefficient
data of NbB and the mixed monoboride (Ti0.5Nb0.5)B in the
B27 structure are taken from Trinkle [17], who employed
similar DFT parameters as in our study.

We use the Voigt-Reuss-Hill (VRH) approximation [32–34]
to estimate the polycrystalline elastic properties of mixed
monoborides by averaging the computed anisotropic elastic
moduli, and compare the results to those obtained from
Vegard’s law [35]. The upper bounds on the bulk modulus B

and the shear modulus G are given by the Voigt approximation
Eq. (1) [32], while the lower bounds on B and G are given by
the Reuss approximation Eq. (2) [33],

BV = 1

9
(C11 + C22 + C33) + 2

9
(C12 + C23 + C13),

GV = 1

15
(C11 + C22 + C33) − 1

15
(C12 + C23 + C13)

+ 1

5
(C44 + C55 + C66), (1)

1

BR
= (S11 + S22 + S33) + 2(S12 + S23 + S13),

1

GR
= 4

15
(S11 + S22 + S33) − 4

15
(S12 + S23 + S13)

+ 1

5
(S44 + S55 + S66), (2)

where C and S are the elastic stiffness and compliance tensors,
respectively. The VRH approximation for B = (BV + BR)/2
and the VRH approximation for G = (GV + GR)/2. Then,

Pugh’s modulus ratio is defined to B/G and Young’s modulus
E is

E = 9BG

3B + G
. (3)

We compare these values to those obtained from Vegard’s law
[35], which approximates the property of the alloy with respect
to the concentration of each constituent in a linear relation.

We directly compute the stacking fault energies of mono-
borides XB in the B27 and Bf structures by constructing
supercells containing stacking faults. The stacking fault energy
(SFE) is the total energy difference per area A between two
supercells with (Es) and without (Ep) a stacking fault

SFEB27 = Es − Ep

AB27

, (4)

SFEBf
= Es − Ep

ABf

. (5)

We apply alias shear [36] to construct a single stacking fault
in the 2 × 1 × 1, 3 × 1 × 1, and 4 × 1 × 1 supercells.

The ordering of common structural units in the B27 and
Bf structures enables us to estimate the stable stacking
fault energies of monoborides using the axial next-nearest-
neighbor Ising (ANNNI) model [24]. The stacking disorders of
structural units (A and B, discussed in Fig. 4) between B27 and
Bf are similar to the atomic disorder between fcc and hcp in
that changing the atomic arrangements in one structure creates
another structure as an intrinsic or extrinsic stacking fault.
Sandlöbes et al. found that the stacking fault energies in Mg
alloys are well described using the energy difference between
fcc and hcp structures by considering up to the second nearest
interlayer interactions [23]. Here, we employ the ANNNI
model for calculating the stacking fault energies of the B27 and
Bf structures, which have commonly repeated structural units
along the [100] direction as . . . AB AB A . . ., and . . . B B B . . .

(or . . . AAA . . .), respectively. Considering only the next-
nearest-neighbor structural unit interactions, the stacking fault
energy (SFE) of the system is the energy difference between
the B27 and Bf unit cells per stacking fault area A,

SFEB27 = E(Bf ) − E(B27)

AB27

, (6)

SFEBf
= E(B27) − E(Bf )

ABf

. (7)

Using the ANNNI model rather than the direct DFT calculation
to compute the stacking fault energy is advantageous since
it avoids the expensive large supercell calculations required
to minimize the interactions between stacking faults. In
addition, the ANNNI model may be more realistic than a
direct calculation for an SQS model where the stacking fault
construction in the supercell does not guarantee a random
local environment near the fault.

III. RESULTS AND DISCUSSION

A. Elastic moduli of monoborides

Figure 1 shows the two crystal structures of monoborides
(B27 and Bf ) considered in this study and that they are
distorted versions of each other. Both B27 and Bf structures
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FIG. 1. The B27 (left) and Bf (right) structures of transition-
metal monoborides XB, where X atoms (X = Ti/Fe/Mo/Nb/V) are
represented by large blue spheres and B atoms are shown as small
green spheres. The atoms connected by orange lines are in the same
plane and are repeated with different orientations in the B27 and Bf

structures, showing that they are distorted versions of each other
(discussed in Fig. 4). The lattice parameters of the B27 and Bf

structures closely match in different directions: 2a, b, and 3c of Bf are
similar to a, 3b, and 2c of B27. For example, TiB in the B27 structure
has lattice parameters a = 6.116 Å, b = 3.048 Å, and c = 4.560 Å,
while TiB in the Bf structure has lattice parameters a = 3.287 Å,
b = 8.487 Å, and c = 3.053 Å.

have unit cells containing four transition-metal atoms X (X =
Ti/Fe/Mo/Nb/V) in the 4c1 Wyckoff position and four B atoms
in the 4c2 position. The fractional coordinates of the 4c1 and
4c2 positions are (0.177,0.25,0.123) and (0.029,0.25,0.603)
in the B27 structure, and (0,0.146,0.25) and (0,0.44,0.25)
in the Bf structure, respectively. Both structures consist of
common structural units (discussed in Fig. 4), and they can
be generated from each other by sliding one structure in a
particular direction with reshuffling of the boron atoms [16].
The zigzag chain of boron atoms, known to contribute to the
high stiffness of monoborides [11], points along the b direction

of the B27 structure, which corresponds to the c direction
of the Bf structure. We find that TiB and FeB are more
stable in the B27 structure by energy differences of 10.5 and
6.8 meV/f.u. relative to Bf , respectively, where each formula
unit contains two atoms. The MoB, VB, and NbB are more
stable in the Bf structure by energy differences of 50.45, 16.9,
and 10.3 meV/f.u. relative to B27, respectively. These relative
stabilities agree qualitatively with experiments [10,37,38].

Figure 2 shows the computed E and B/G values of
monoborides, indicating that the values of mixed monoborides
agree well with the results estimated by Vegard’s law (e.g.,
the straight lines that would connect the values of constituent
monoborides X1B and X2B). In most cases the E values of
mixed monoborides (X1

0.5X
2
0.5)B are similar (within 10%) to

the values predicted by Vegard’s law, with the exceptions of
mixed monoborides containing either Mo or Fe. In particular,
(Ti0.5Mo0.5)B and (Fe0.5Nb0.5)B deviate the most positively
and negatively from Vegard’s law, which raises a question
about the stability of these materials as a random solid solution
as either B27 or Bf structure (discussed in Sec. III B). Based on
our calculation using the SQS model, the mixed (X1

0.5X
2
0.5)B

of (Ti,Mo)B, (Ti,V)B, (Nb,V)B, (Mo,Nb)B, (Mo,V)B, and
(Ti,Nb)B systems have higher E (i.e., stiffness) than TiB. How-
ever, some of the mixed monoborides such as (Ti0.5Mo0.5)B
and (Mo0.5V0.5)B are not predicted by Vegard’s law as mixed
monoborides with a higher Young’s modulus than TiB, when
considering the two constituent monoborides as the B27

structure. The shear modulus G (not shown here) has the
same trend as E. Pugh’s ratio estimates the toughness of the
materials, where B/G � 1.75 indicates tough materials while
B/G � 1.75 indicates brittle materials [22]. Among all the
monoborides shown here, TiB has the smallest B/G value,
which leads to the possibility of improving the toughness of
TiB with the presence of solutes in the Ti matrix. Although
the computed B/G using SQS agrees well with the estimation
from Vegard’s law for most of the mixed monoborides, the
B/G of mixed (Fe0.5Mo0.5)B as both B27 and Bf structures
does not follow well with the Vegard’s law estimations. The
tabular form of bulk modulus B, shear modulus G, and Young’s

FIG. 2. Polycrystalline elastic properties of XB (X = Ti/Fe/Mo/Nb/V) and (X1
0.5X

2
0.5)B. The Young’s modulus E in GPa (left) and Pugh’s

modulus ratio B/G (right) of each monoboride in both of B27 and Bf structures are shown. The E and B/G values are similar between both
crystal structure types and agree well with the estimations from Vegard’s law for most of the monoborides, except the ones containing Mo
and Fe.
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modulus E as well as the lattice parameters of XB, and mixed
(X1

0.5X
2
0.5)B for both structures are available [39].

The deviations from Vegard’s law in Young’s modulus
are also reflected in the volume (lattice parameter) of mixed
borides. We find that the variation in volume is largest for
the FeB-NbB system and smallest for the TiB-MoB system.
This is because of the difference in volume of constituent
monoborides (i.e., FeB < VB < MoB � TiB < NbB) which
can be explained by the same trend of Seitz radii of the
elements (i.e., Fe < V < Mo < Ti < Nb) [40]. We note that
the volumes of (Ti0.5Mo0.5)B and (Fe0.5Nb0.5)B show the
largest deviation from the Vegard’s law estimations negatively
(by −8 Å3 for a 48-atom supercell) and positively (by
13 Å3 for a 48-atom supercell), respectively. The deviation
from Vegard’s law for (Ti,Mo)B implies that the mixing
affects the electronic structure around the Ti and Mo atoms
and induces a different environment from Ti in TiB and
Mo in MoB. Compared to Vegard’s law predictions, the
mixed (Ti0.5Mo0.5)B has a smaller volume, indicating stronger
interatomic bonding which leads to a larger Young’s modulus.
On the other hand, the mixed (Fe0.5Nb0.5)B has a larger
volume, indicating a weaker interatomic bonding which results
in a lower Young’s modulus. We investigated the applicability
of Vegard’s law for estimating Pugh’s ratio and stacking fault
energy, but they do not exhibit similar trends as Young’s
modulus and volume. We expect Pugh’s ratio and stacking
fault energy to correlate with more complex environmental
factors beyond atomic bonding.

B. Phase stability of mixed monoborides

We compute the total energies of mixed monoborides
(X1

1−xX
2
x)B (X = Ti/Fe/Mo/Nb/V) in both B27 and Bf struc-

tures for x = 0, 1
24 , 1

4 , 1
2 , 3

4 , 23
24 , and 1. We fit these energies with

cubic splines to construct binary phase diagrams of X1B−X2B
systems to explain the relative stability in pseudobinary
systems between the B27 and Bf structures. The Gibbs free
energy G of an (X1

1−xX
2
x)B as a function of composition x is

G = H − T S = H + kBT [x ln x + (1 − x) ln(1 − x)], (8)

where H is the mixing enthalpy, T is the temperature in
degrees Kelvin, S is the configurational entropy, and kB

is the Boltzmann constant. The common tangent points of
fitted Gibbs free energy curves represent the equilibrium
compositions (i.e., the solubility limit) of solutes in the X1B
and X2B phases for each temperature.

We find a large solubility limit in mixed monoborides
containing Ti compared to those containing Fe. The solubility
limits of Nb, V, and Mo in TiB are above 0.30 at 1600 K,
which are comparable to the reported experimental results:
TiB dissolves the Nb, V, and Mo up to 0.4, 0.5, and 0.34,
respectively, and the solubility limits of Ti in NbB, VB,
and MoB are 0.3, 0.15, and 0.64, respectively, at around
1400 ◦C [6,20,21]. The ternary systems containing Fe, such
as FeB-VB, FeB-MoB, and FeB-NbB, have a low solubility
(less than 0.05) and are unlikely to exist as a random solid
solution either as B27 or Bf structures over a majority of the
monoboride composition range. This difference in solubility
trend between monoborides containing Ti and Fe is possibly
due to the large differences in the number of valence electrons
between Fe (in group VIII) and solutes V, Nb, and Mo (in
groups V and VI), compared to those differences between Ti
(in group IV) and the solutes, based on the Hume-Rothery
rules which suggest the same valence elements tend to have
an extensive solid solubility [41]. We find that the mixed
monoborides where two constituent monoborides are most
stable as Bf structures (i.e., VB, MoB, and NbB) are stable
as Bf structures across the full composition range for the
entire temperature range. On the other hand, for the TiB-FeB
system where both of the constituent monoborides are most
stable as B27 structures, the solubilities are small and there are
even mixed monoboride compositions that are stable as Bf

structures. A possible reason is the large difference between
ionic radii of Fe and Ti which may cause the crystal structures
to distort easily from one to another, however, this requires
further studies to validate the occurrence of Bf structure stable
phases for the mixture of TiB and FeB.

Figure 3 shows the solubility limits in the FeB-NbB and
TiB-MoB systems which show a significant deviation of
E from Vegard’s law predictions. The solubility of Fe in
NbB and of Nb in FeB is low (<0.001) even at a high
temperature (2000 K), showing that the mixed monoborides
with compositions between these solubility limits are unlikely
to exist as both B27 and Bf structures for the entire temperature

FIG. 3. Solubility limits in FeB-NbB system from 1000 to 2000 K, and in TiB-MoB system from 0 to 2000 K. The solubility of Nb in
FeB (B27 structure) and of Fe in NbB (Bf structure) is very small, less than 0.001 even at 2000 K. In contrast, there is a large solubility in
TiB-MoB system: The solubility limit of Mo in TiB (B27 structure) is 0.411–0.413 and of Ti in MoB (Bf structure) is 0.570–0.573 over the
entire temperature range from 0 to 2000 K.
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FIG. 4. B27 structure (left) and stacking fault formation (right) on
the (200) plane in the 1

2 [001] direction. The B27 structure consists
of structural units A and B, where A has six metal atoms connected
with dashed lines, including the two boron atoms inside it, while B
has six metal atoms connected with solid lines and two boron atoms
inside it. The Bf structure consists of only one type of structural
unit . . . B B B . . . (or . . . AAA . . .) and is generated by creating an
intrinsic or extrinsic stacking fault in the B27 structure, and vice versa.
Additionally, it requires the reshuffling of boron atoms at the stacking
fault to form the same B unit far from the stacking fault so that the
distance d2 between boron atoms at the stacking fault becomes close
to the ideal distance between boron atoms d1 away from the fault.

range. Thus we expect that most of the FeB-NbB monoboride
compositions, including (Fe0.5Nb0.5)B, will exist as an ordered
mixture of the ternary system. Also, we attribute the significant
small value of E for mixed (Fe0.5Nb0.5)B compared to the
estimations of Vegard’s law to the unfavorable phases of this
composition as a random solid solution. On the other hand, the
solubility of Ti in MoB and of Mo in TiB is large (0.57 and
0.41, respectively) and varies little with temperature, showing
that most of the mixed monoborides (Ti,Mo)B, including
(Ti0.5Mo0.5)B, are stable as either B27 or Bf structures. Based
on the significantly larger E of (Ti0.5Mo0.5)B compared to
the Vegard’s law prediction and its stability as a mixed
phase, we expect that (Ti0.5Mo0.5)B and a possibly wide
range of compositions in the TiB-MoB system are promising
candidates for Ti-matrix composites with improved stiffness
and toughness.

C. Stacking fault energy

Figure 4 shows that the stacking fault in the B27 structure has
the same local environment as the Bf structure and vice versa.
The orientational relationship between the two crystal struc-
tures has been observed experimentally using high-resolution
transmission electron microscopy: (100) B27‖(110) Bf and
[010] B27‖[001] Bf in Ti-B alloys [7,15,42,43]. The TiB grows
as the B27 structure, which is the most stable state, and
generates stacking faults in the form of the Bf structure
(metastable state) during growth. The B27 structure unit cell
consists of AB structural units and the Bf structure unit cell
consists of AA (or B B) structural units, where A and B are
defined in Fig. 4. The A and B units can be generated from

TABLE I. Stable stacking fault energies (SFEs) of monoborides.
The stacking faults are in the 1

2 [001] direction on the (200)
plane of the B27 structure and in the 1

4 [11̄0] direction on the (110)
plane of the Bf structure. We compute SFEs directly using Eqs. (4)
and (5), and the values listed in the table are extrapolated for an infinite
number of atoms N based on the calculations where N = 16, 24, and
32 for the B27 structure and N = 16 and 32 for the Bf structure. The
SFEs are also estimated by the ANNNI model using Eqs. (6) and
(7). The ANNNI model provides good estimates of the stable SFEs
of monoborides with a maximum deviation of about 26 mJ/m2 for
NbB.

SFE (mJ/m2) TiB FeB MoB VB NbB

Direct calculation (in B27) 48.4 28.0 −233.5 −69.7 −17.3
ANNNI model (in B27) 48.0 36.7 −230.0 −84.0 −43.8
Direct calculation (in Bf ) −48.5 −41.2 244.1 84.5 56.6
ANNNI model (in Bf ) −48.2 −36.5 228.7 84.5 44.1

each other by a shift along the 1
2 [001] direction on the (200)

plane of the B27 structure or a shift along the 1
4 [11̄0] direction

on the (110) plane of the Bf structure, and unfault by reverse
displacements. However, this does not occur only by a simple
shear, but also requires boron reshuffling near the fault plane.
For example, in TiB we find that the distance between boron
atoms at the fault plane (d2) decreases from 2.064 to 1.816 Å
after relaxation, becoming much closer to the ideal distance
between boron atoms (d1) of 1.828 Å. The boron reshuffling
lowers the energy of the system while creating well matching
B structural units at the stacking fault region in Fig. 4.

Table I shows agreement between the stable stacking fault
energy computed directly from DFT and the ANNNI model
for both B27 and Bf structures. We compute the stacking
fault area of the (200) plane in the B27 structure and of the
(110) plane in the Bf structure for each monoboride using the
lattice parameters from the relaxed geometries. The positive
stacking fault energies for TiB and FeB in the B27 structure
indicate that they are more stable as B27 than as the Bf

structure, which is consistent with the total energy comparison
shown in Sec. III A. The small differences between the direct
calculation and ANNNI model suggest that accounting for
interactions between adjacent structural units only yields a
good approximation for computing stacking fault energies, and
also avoids computationally expensive calculations requiring
large supercells for the stacking fault energy of mixed mono-
borides. The maximum deviation between the two approaches
occurs for NbB, which may requires higher-order interaction
parameters in the ANNNI model to improve the agreement
with the direct calculations.

Figure 5 shows the estimated stable stacking fault energies
(SFEs) of monoborides computed using the ANNNI model,
suggesting that mixed monoborides have lower SFEs than
TiB. The mixed monoborides containing Ti or Fe except for
(Fe0.5V0.5)B tend to have low SFEs. In particular, the mixed
(X1

0.5X
2
0.5)B of (Ti,Mo)B, (Ti,V)B, (Ti,Fe)B, and (Fe,Nb)B

systems have lower SFEs than TiB, indicating that the mixed
monoborides could have improved ductility. Among those,
mixed (Ti0.5Mo0.5)B and (Ti0.5V0.5)B, which have higher E,
B/G, and lower SFEs than TiB, are promising candidates for
aerospace and biomedical applications. We note that Vegard’s
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FIG. 5. The stable stacking fault energy SFE (mJ/m2) of mixed
(X1

0.5X
2
0.5)B computed using the ANNNI model for both the B27

and Bf structures. The SFEs for the B27 and Bf structures are
calculated using Eqs. (6) and (7), respectively. A negative SFE
indicates instability in that crystal structure and the monoboride is
more likely to stay in the other crystal structure. The monoborides
with the SFEs close zero are expected to slip more easily under shear.
The shaded area corresponds to the SFE of TiB, ±48 mJ/m2.

law approximates the larger magnitude of SFE of mixed
(Ti0.5Mo0.5)B than that of TiB when considering the two
constituent monoborides as the B27 structure, which draws
different conclusions between Vegard’s law and the SQS
model as to whether mixed (Ti0.5Mo0.5)B would improve the
ductility of Ti monoborides. Although mixed (Fe0.5Nb0.5)B
and (Ti0.5Fe0.5)B have a lower SFE than TiB, they have a lower
Young’s modulus than TiB (see Sec. III A) and low solubilities
(see Sec. III B) which makes them practically undesirable
as mixed monoborides for a wide composition range. Also,
despite the Pugh’s ratio of MoB as the B27 structure has the
highest value (see Fig. 2), implying the highest toughness
among all the monoborides considered in this study, it is
unlikely to exist as a bulk or even in the form of a stacking
fault as the Bf structure. Similarly, the mixed monoborides
(X1

0.5X
2
0.5)B of (Mo,Nb)B, (Mo,V)B, and (V,Nb)B systems are

stable in the Bf structure and require higher energy than TiB to
create a stacking fault, i.e., a portion of the B27 structure, from
their stable structure. The tabular forms of the stacking fault
energies of XB, and mixed (X1

0.5X
2
0.5)B for both structures are

available [39].

IV. CONCLUSION

We studied the polycrystalline mechanical properties and
phase stabilities of transition-metal monoborides XB and

(X1
1−xX

2
x)B (X = Ti/Fe/Mo/Nb/V) in both of the FeB (B27)

and CrB (Bf ) crystal structures using density functional
theory calculations. We find that the computed Young’s
modulus, Pugh’s modulus ratio, and stacking fault energy
of (X1

0.5X
2
0.5)B using a special quasirandom structure deviate

from the predictions of Vegard’s law in cases containing Fe or
Mo. These deviations lead to different conclusions whether the
mixed monoborides may have a higher Young’s modulus, and a
lower stacking fault energy than TiB. The mixed monoborides
containing Fe have low solubilities and are less likely to exist
as a random solid solution either in the B27 or Bf structure for
most of the composition range. We find that both the MoB-VB
and MoB-NbB systems are stable as the Bf structure for
the entire composition range, and these mixed monoborides
require a high energy to create a stacking fault compared to
TiB, which is not desirable for improving ductility.

This work searches for potential Ti monoborides with a
high Young’s modulus, high Pugh’s ratio, and low stacking
fault energy for applications in the aerospace and biomedical
fields. We find that TiB has the smallest Pugh’s ratio among
monoborides and therefore expect that the presence of solutes
could improve the toughness of the Ti matrix. The mixed
monoborides containing Ti have a large solubility and show
a lower or similar stacking fault energy than TiB, indicating
a higher ductility than TiB. In particular, mixed (Ti0.5Mo0.5)B
and (Ti0.5V0.5)B are promising for their higher E, B/G, and
lower stacking fault energy than TiB, along with their phase
stability over a large composition and temperature range.

This computational approach is not limited to specific
solutes or monoboride systems, and can be applied to mono-
borides and diborides with other solutes or other quaternary
(or even higher-order) ceramic phases and provides a guide to
tailor their structural properties and phase stabilities. Also,
from the crystal orientation relationship between the B27

and Bf structures, we find that the direct calculation of the
stable stacking fault energy of monoborides agrees well with
the axial next-nearest-neighbor Ising (ANNNI) model, which
is applicable to more complex ceramic phases and saves
computational time. We expect these results will help suggest
optimal metallic borides for Ti-based alloys and bulk ceramics
and can be verified by complementary experiments.
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