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Can Aerosols Be Trapped in Open Flows?
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The fate of aerosols in open flows is relevant in a variety of physical contexts. Previous results are
consistent with the assumption that such finite-size particles always escape in open chaotic advection.
Here we show that a different behavior is possible. We analyze the dynamics of aerosols both in the
absence and presence of gravitational effects, and both when the dynamics of the fluid particles is
hyperbolic and nonhyperbolic. Permanent trapping of aerosols much heavier than the advecting fluid is
shown to occur in all these cases. This phenomenon is determined by the occurrence of multiple vortices
in the flow and is predicted to happen for realistic particle-fluid density ratios.
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In open chaotic advection [1], fluid particles are injected
into some domain containing a chaotic saddle [2], where
they move chaotically for a finite amount of time until they
finally escape. This is the history of almost all the injected
particles in the typical case where the fluid is incompress-
ible. When instead finite-size particles are injected into the
domain, the outcome can be fundamentally different [3].
The reason is that these particles are subjected to new
forces, in particular, the Stokes drag. Their dynamics is
dissipative, allowing the existence of attractors where the
particles can be trapped. This has been shown to be typical
in the case of bubbles, i.e., finite-size particles less dense
than the fluid [4]. On the other hand, previous studies on
specific open flows support the assumption that finite-size
particles denser than the fluid, called aerosols, always
escape [4,5]. Moreover, there is evidence that aerosols
escape even faster than the particles of fluid [4]. The
physical reason for this is that chaotic saddles are usually
associated with the occurrence of vortices. Bubbles in
vortices tend to move inward, therefore possibly being
trapped, whereas aerosols tend to spiral outward, therefore
escaping and probably doing so faster than the fluid itself.

The dynamics of heavy particles in open flows is im-
portant in many fields. In astrophysics, it can provide a
mechanism for the formation of planetesimals in the pri-
mordial solar nebula [6]. In geophysics, it has direct con-
sequences for the transport and activity of pollutants and
cloud droplets in the atmosphere [7]. It can also be useful
for particle separation in industrial applications.

In this Letter, we show that the premise that aerosols in
vortices tend to move outward does not necessarily imply
that these particles will always escape faster in open flows.
More remarkably, we show that aerosols much heavier than
the advecting fluid can be permanently trapped in open
chaotic advection. The mechanism affording the trapping
of aerosols is associated with the occurrence of two or
more vortices in a bounded region of the flow. In escaping
from a vortex, the aerosols may enter the domain of
another vortex, which in its turn may drive the particles
back to the first vortex. This can lead to the formation of
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bounded stable orbits that give rise to attractors. We illus-
trate this phenomenon for two widely studied open flows:
the blinking vortex system, which has static vortices, and
the leapfrogging vortex system, which has moving vortices.
These systems do not include any physical obstacle or
boundary layer effect [8] that could mask the purely dy-
namical phenomenon we are interested in. The trapping of
aerosols in open flows sharply contrasts with the behavior
of the fluid particles, which escape and go to infinity with
probability 1.

We start with the equation of motion for a small heavy
spherical particle in a fluid flow. In dimensionless form, it
reads [9]

I =A(u — 1 — Wn), (1)

where r is the position vector of the particle, u = u(r(z), r)
is the fluid velocity field evaluated at the particle’s position,
and n is a unit vector pointing upward in the vertical
direction. The two parameters governing the dynamics
are the inertia parameter A and the gravitational parameter
W. They can be written in terms of the characteristic length
L and velocity U of the flow, radius a of the particle,
kinematic viscosity v of the fluid, gravitational accelera-
tion g, and densities p, and p, of particle and fluid,
respectively. The defining equations for these parameters
are W = (2a’p,8)/(9vUp;) and A = R/St, where R =
ps/p, < 1and St = (2a*U)/(9vL) is the Stokes number
of the particle. In the case of a water droplet in air flow, for
example, one has p;/p, ~ 1073,

We first consider the blinking vortex-source system [10].
This 2-dimensional system is periodic in time and consists
of two alternately point sources in a plane. It models the
alternate injection of rotating fluid in a large shallow basin.
The blinking vortex-source system is described by the
stream function

¥ =—(Klnr' + Q¢")O(7) — (KInr" + Q¢")O(—7),
2
step function,
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7=0.5T — (tmodT), and T is the period of the flow.
Here, ' and ¢’ are polar coordinates centered at (x, y) =
(—1,0), while " and ¢ are polar coordinates centered at
(1,0). The parameters Q and K are the strengths of the
source and vortex, respectively. The parameter Q is nega-
tive (in fact, positive values of Q define a vortex-sink
system). Positive and negative values of K correspond,
respectively, to counterclockwise and clockwise vortex
motion. The sources are located at positions (=1, 0). For
each half-period, the flow remains steady with only one of
the sources open. In the time interval 0 < tmod T < 0.57,
the open source is the one at (—1, 0), whereas in the time
interval 0.57 < tmod T < T, the open source is the one at
(1, 0). The velocity field of the fluid flow is

u, = ov/ay,

u = (u, u,), Uy, = —9W/ax.

3

The parameters Q, K, and T in Eq. (2) can be chosen to
yield either a nonhyperbolic or a hyperbolic dynamics for
the fluid particles (passive advection). For instance, for
0= —-20, K= —400, and T = 0.1, the invariant set is
nonhyperbolic as it consists of a chaotic saddle plus (at
least) one Kolmogorov-Arnold-Moser (KAM) island. For
0= -10, K= —160, and T = 0.1, on the other hand,
apparently there are no islands. Numerical calculations
confirm that the survival probability of fluid particles in
the neighborhood of the chaotic saddle decays exponen-
tially fast, which is a signature of hyperbolic dynamics.

We now investigate the dynamics of aerosols governed
by Eq. (1) in the flow given by Eqgs. (2) and (3), both in the
cases where the passive advection is hyperbolic and non-
hyperbolic, and both in the absence and presence of grav-
ity. As shown in Fig. 1, the trapping of aerosols in attractors
can occur in all these cases. The figure shows, for different
parameters, the projection into the physical space of the
attractor at time instants 1 mod 7 = 0. The corresponding
basins of attraction for initial velocities equal to the local
velocities of the fluid are also shown. We note that the
dynamics of the aerosols takes place in a 4-dimensional
phase space, corresponding to the variables (x, y, v,, and
vy) and is dissipative due to the drag term, whereas the
dynamics of the fluid particles is 2 dimensional, since their
velocity is a function of their position, and is conservative
because the flow is incompressible. Despite the fact that,
from the dynamical systems viewpoint, dissipation may
give rise to attractors, we stress that we deal with open
flows and that in this case the presence of dissipation does
not imply the occurrence of attractors in a bounded region.
In open systems, attractors may be formed at infinity in the
physical space [5]. The trapping of aerosols is counter-
intuitive also in view of the fact that these particles move
outward in vortices. Notwithstanding, Fig. 1 shows that this
phenomenon is possible in a broad range of conditions.
Figure 1(a) shows the occurrence of attractors for the
dynamics of the aerosols when the underlying passive
advection is nonhyperbolic. For small W and large A, the
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FIG. 1. Projection into the physical space of the stroboscopic

section tmod7 = 0 for the aerosol dynamics in the flow of
Eq. (2). The black X symbols indicate the attractors and the gray
areas the corresponding basins of attraction for initial velocities
equal to the local wvelocities of the fluid at 7=0.
(a) Nonhyperbolic and (b) hyperbolic passive advection in the
absence of gravity; (c) nonhyperbolic and (d) hyperbolic passive
advection in the presence of gravity. The attractors in (a)—(c) are
period-one orbits, whereas the attractor in (d) is a period-two
orbit. Note that the attractors are not necessarily inside the gray
areas because these areas correspond to subsets of the basins of
attraction defined by specific initial velocities. The gravity vector
points in the negative direction of the y axis.

dynamics of the aerosols can be understood as a perturba-
tion of the dynamics of the fluid particles [11]. As shown
below, in this regime attractors can be formed in the KAM
islands of the passive advection. In the case of Fig. 1(a), we
are not in the limit of weak perturbation and the basin of
attraction is actually larger than the KAM island itself. The
appearance of attractors when the aerosols are advected by
a hyperbolic passive dynamics is less expected, since
hyperbolic systems are structurally stable. Nevertheless,
the occurrence of attractors is possible also in this case, as
shown in Fig. 1(b), and the reason again is that we are far
from the weak perturbation limit. Attractors also occur
when the gravitational effects are important, i.e., when W
is of order of 1 or larger. As shown in Figs. 1(c) and 1(d),
this is possible for both nonhyperbolic and hyperbolic
passive advection. We consider that the gravitational field
points along the y direction.

It is worth noting the rich variety of possibilities for the
motion of aerosols under gravity, which includes both the
trapping in smooth open flows described here, the suspen-
sion in random closed flows discussed in [12], and the
increased average settling velocity when the aerosols are
in an infinite, periodic, cellular fluid flow [13]. Note that
the mechanism for suspension presented in [12] is based on
the change of sign of the curvature of the streamlines while
our mechanism is based on the vortex-to-vortex advection
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of the aerosols. In particular, the curvature of the stream-
lines of the blinking vortex-source system is one-signed
and does not satisfy the conditions considered in [12].

The stroboscopic sections shown in Fig. 1 correspond to
attractors that are simple periodic orbits. The full physical
space projection of one such attractor is shown in Fig. 2(a).
But strange attractors can also occur, as shown in Fig. 2(b).
They are formed when either A or W is increased [see
Figs. 2(c) and 2(d)]. The bifurcation diagrams are domi-
nated by the period-doubling route.

The trapping of aerosols in open flows displaying cha-
otic advection is a general phenomenon. The dynamics
defined by Eq. (1) is dissipative. In open flows, dissipation
is not a sufficient condition for the occurrence of bounded
attractors. However, this condition becomes sufficient in
periodic flows if a set of initial conditions with positive
volume is advected back to itself after one time period. In
the case of bubbles, this condition is frequently satisfied
because bubbles tend to remain inside closed orbits of the
fluid particles generated by vortices [4,5]. This mechanism
cannot explain the existence of attractors in the case of
aerosols because, for heavy particles, rather the opposite
happens due to the centrifugal force. However, when mul-
tiple vortices are present in the flow and remain confined to
a bounded region, we show that a different mechanism can
give rise to attractors in which the aerosols are trapped. The
mechanism of trapping is in this case based on successive
“escape attempts” from distinct vortices. As shown in
Fig. 3, a possible outcome of the motion of aerosols out-
ward successive vortices is the formation of bounded or-
bits. Trapping occurs if this happens for a set of orbits with
positive volume, as shown for the blinking vortex system.
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FIG. 2. (a) Periodic attractor corresponding to W =0 and
(b) strange attractor corresponding to W = 40/9. The gray
dots represent the point sources. (c)—(d) Bifurcation diagrams
showing the x coordinates of the attractor at time rmod 7 = 0 as
a function of parameter A in the absence of gravity (c) and as a
function of W when A = 180 (d). The unspecified parameters are
the same as in Fig. 1(b).

To demonstrate the generality of our results, we now
consider a system with moving vortices: the leapfrogging
vortex system [14], which is a 2-dimensional flow consist-
ing of two vortex pairs of equal strengths. As a conse-
quence of mutual influence [15], these vortex pairs move
along the direction of a symmetry axis that separates them.
Denoting the positions of the vortices by (x;, *y;) and
(xp, £y,) we take x; = x, =0, y; = 0.5, and y, = 1.5 as
the vortices coordinates at 7= 0. The Hamiltonian

) — (2 +(2y0)*1[(270)* ~4(r,/2)*] ;
H(xg, x,, 2y9,%) = 0.51n EETOwa describes
the periodic motion of the vortices, where x5 =

(x1 +x2)/2, yo = (y1 +¥2)/2, x, = (x3 = x1), and y, =
(¥2 — y1)- The stream function in a reference frame whose
origin is the point (xy(¢),0) reads W(x,y, 1) =
In[(r374)/(ry12)] — %o(2)y, where r%(z) =[x— X1(2)(¢)]2 +
[y = yi(®]* and r§(4) =[x — xo0)(D P + [y + yo0y O
In this reference frame, the fluid particles come from x =
oo, are scattered in the region close to the origin, where the
vortices are confined, and finally move toward the negative
direction of the x axis. We have investigated the dynamics
of aerosols in this flow and we found trapping for a broad
range of the parameter A. Figure 4 illustrates the trapping
of aerosols in this flow for A = 50 and W = 0.

In the general case of nonhyperbolic passive advection,
we can demonstrate the formation of attractors explicitly
for A> 1 and W < 1 using a first-order approximation
[11] of the dynamics given by r = u — Wn — % ‘3—'; + (u-
V)u — (Wn - V)u]. If W << 1 and the magnitude of the
term inside the brackets is much smaller than A, the
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FIG. 3. Trajectories of an aerosol (black curve) and a fluid
particle (gray curve) of the same initial position. In (a), the
aerosol and the fluid particle also have the same initial velocity,
whereas in (b)—(d) the aerosol simply continues the trajectory
initiated in (a). The point source that is open during each time
interval is shown as a black dot (the gray dot corresponds to the
other one). The dashed lines represent the trajectory of the
aerosol before the time interval indicated in the figure. After 2
periods of the fluid flow, the aerosol is already very close to a
periodic attractor [cf. Fig. 2(a)]. The parameters are the same as
in Fig. 1(b).
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FIG. 4 (color online). Trapping of aerosols in the leapfrogging
vortex flow: physical space projection of the 4 attractors [ X (red)
symbols] and corresponding basins of attraction (colored re-
gions) for initial velocities equal to the fluid velocity at
tmodT = 0.8, where T is the period of the flow. Also shown
are the velocity field of the fluid (black arrows) and the positions
of the vortices (black dots) at the same instant. The closed (red)
curves indicate the orbits described by the attractors. See [16] for
the animation.

dynamics corresponds to a small perturbation of the pas-
sive advection in a 2-dimensional effective phase space. If
the divergence V - I of the velocity field is negative, as in
the blinking vortex-source system [17], KAM islands of
the passive advection are expected to be transformed into
basins of attraction. The formation of attractors in KAM
islands has been observed in the advection of bubbles [5]
and in the study of Hamiltonian systems [18]. However, in
a very neat contrast with the mechanism previously con-
sidered in the study of bubbles, in the case of aerosols the
KAM islands that give rise to attractors describe the dy-
namics of particles that necessarily visit more than one
vortex. From the relation V - i = (0? — 5%)/(24) [11], we
can see that in these islands the strain s must dominate over
the vorticity w. We emphasize, however, that the phenome-
non of trapping of aerosols is far more general since it also
occurs in nonperturbative regimes (small A and large W)
and in the absence of KAM islands, as shown in Figs. 1-4.

In conclusion, we have shown the occurrence of trapping
of heavy particles in open flows. This phenomenon does
not depend on the nonhyperbolicity of the passive advec-
tion and is possible even when the gravitational effect is
large. An experiment to demonstrate trapping in the leap-
frogging vortex system could be done with air as the
working fluid [19]. In this case, the condition pf/p,, <
1 is fulfilled for virtually all solid and liquid particles. The

trapping mechanism reported here provides a mechanism
for the concentration of heavy particles in specific regions
of the physical space. This may play a role in planetesimal
formation in primordial nebula with rapidly rotating anti-
cyclonic vortices, where the centrifugal force prevails over
the Coriolis force. It may also be useful for particle-fluid
and particle-particle (different size classes) separation in
industrial applications.
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