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Wave-packet fractional revivals is a relevant feature in the long time-scale evolution of a wide range of
physical systems, including atoms, molecules, and nonlinear systems. We show that the sum of
information entropies in both position and momentum conjugate spaces is an indicator of fractional
revivals by analyzing three different model systems: (i) the infinite square well, (ii) a particle bouncing
vertically against a wall in a gravitational field, and (iii) the vibrational dynamics of hydrogen iodide
molecules. This description in terms of information entropies complements the usual one in terms of the
autocorrelation function.
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The phenomenon of quantum wave-packet revivals has
received wide attention over the last several years. It has
been investigated theoretically in atomic and molecular
quantum systems [1] and observed experimentally in,
among others, Rydberg wave packets in atoms and mole-
cules, molecular vibrational states, and Bose-Einstein con-
densates [2]. Revivals occur when a wave-packet solution
of the Schrödinger equation evolves in time to a state that
closely reproduces its initial waveform. Fractional revivals
appear as the temporal formation of structures that are
given by a superposition of shifted and rephased initial
wave packets [3–5]. It has been shown [3,6] that the
relevant time scales of wave function evolution are con-
tained in the coefficients of the Taylor series of the energy
spectrum, En, around the energy En0

corresponding to the
peak of the initial wave packet. More precisely, the second-
, third-, and fourth-order terms in this expansion are asso-
ciated with, respectively, the classical period of motion Tcl,
the quantum revival time-scale Trev, and the so-called
superrevival time. Fractional revival times can be given
in terms of the quantum revival time-scale by t � pTrev=q,
with p and q mutually prime [3], and are usually analyzed
using the autocorrelation function A�t�, which is the over-
lap between the initial and the time-evolving wave packet
[7]. At certain fractional revivals, however, the autocorre-
lation function may be of limited help since the wave
packet reforms itself, possibly into a scaled copy of its
original shape, in a location that does not generally coin-
cide with its initial position. An expectation value analysis
of wave-packet evolution has been recently proposed by
some authors, but it misses to fully detect the fractional
revivals [5,8,9].

In this Letter we study the wave-packet dynamics by
means of the sum of the information entropies of the
probability density of the wave packet, in both position
and momentum spaces. We show that it provides a natural
framework for fractional revival phenomena. The position-
space information entropy measures the uncertainty in the
localization of the particle in space, so the lower this
entropy is, the more concentrated the wave function is,

the smaller the uncertainty is, and the higher the accuracy
is in predicting the localization of the particle. Momentum-
space entropy measures the uncertainty in predicting the
momentum of the particle. Thus, information entropy gives
an account of the spreading (high entropy values) and the
regenerating (low entropy values) of initially well localized
wave packets during the time evolution. Moreover, if
��x� � j �x�j2 and ��p� � j��p�j2 are, respectively, the
probability densities in position and momentum spaces
(where  and � are the position and momentum
wave packets), the uncertainty relation for the information
entropy implies S� � S� � 1� ln�, where S� �
�
R
��x� ln��x�dx and, analogously, S� � �

R
��p��

ln��p�dp. This inequality is a generalization of the stan-
dard variance-based Heisenberg uncertainty relation [10].
It is satisfied as a strict equality only for Gaussian wave
packets and bounds from below the sum of the entropies to
1� ln�. During the evolution of a Gaussian wave packet,
the entropy sum decreases at the revival times to reach the
above value, which plays a similar role to unity in the
autocorrelation function. Furthermore, the formation of a
number of ‘‘minipackets’’ of the original packet, i.e., frac-
tional revivals of the wave function, will correspond to the
relative minima of the total entropy. Notice that it is the
sum of the entropies that is employed as an indicator of the
fractional revivals, and not either of them separately, be-
cause only the sum embraces both the configurational and
the motion aspects of the wave-packet dynamics. In this
context, we point out that the sum of entropies for the phase
and photon numbers has been used to study the formation
of macroscopic quantum superposition states from an ini-
tially coherent state via interaction with a Kerr medium
[11]. Additionally, we note that a finite difference eigen-
value method has been recently derived from which the
various orders of revivals can be directly calculated rather
than searching for them [12].

In what follows we investigate the time evolution of
wave packets in three one-dimensional, model systems
that exhibit fractional revival behavior, namely, the famil-
iar infinite square well, the quantum ‘‘bouncer,’’ that is, a
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quantum particle bouncing on a hard surface under the
influence of gravity, and a superposition of molecular
wave packets in a Morse potential describing the vibrations
of hydrogen iodide molecules. The infinite square well is
especially well suited for the understanding of fractional
revival phenomena because of its amenability to analytical
treatment and has been analyzed by several authors (see,
for instance, [4,5,13]). On the other hand, the quantum
bouncer is the quantum version of a familiar classical
system and has also been studied in the context of wave-
packet propagation and revival phenomena [5,14,15].
Recently, gravitational quantum bouncers have been real-
ized using neutrons [16] and atomic clouds [17], hence
endowing this system with great physical significance.
Finally, molecular wave packets provide a realistic sce-
nario for the assessment of the entropy approach. Revivals
and fractional revivals have been observed experimentally
in wave packets involving vibrational levels and can be
probed by random-phase fluorescence interferometry
[2,18].

Consider an infinite potential well defined as V�x� � 0
for 0< x< L and V�x� � �1 otherwise. The time-
dependent wave function for a localized quantum wave
packet is expanded as a one-dimensional superposition of
energy eigenstates as

  �x; t� �
X
n

anun�x�e�iEnt=@; (1)

where un�x� represent the normalized eigenstates and En
the corresponding eigenvalues, un�x��

���������
2=L

p
sin�n�x=L�;

En�n2
@

2�2=2mL2. Following the customary procedure,
the classical period and the revival time can be computed
as Tcl � 2mL2=@�n and Trev � 4mL2=@�, respectively.
As an example, it is easy to see by direct substitution in
(1) that  �L� x; Trev=2� � � �x; 0�, so at time t � Trev=2
a copy of the initial state reforms itself, reflected around
the center of the well [4].

We shall consider an initial Gaussian wave packet with a
width �, centered at a position x0 and with a momentum
p0,  �x; 0� � exp���x� x0�

2=2�2
@

2 � ip0�x� x0�=@	=��������������
�@

����
�
pp

. Assuming that the integration region can be ex-
tended to the whole real axis, the expansion coefficients
can be approximated with high accuracy by an analytic
expression [5]. To calculate the corresponding time-
dependent, momentum wave function we use the Fourier
transform of the Eq. (1), and the momentum-space nor-
malized eigenstates

 �n�p� �

�������
@

�L

s
pn

p2 � p2
n
���1�neipL=@ � 1	: (2)

Without loss of generality, we henceforth take 2m � @ �
L � 1, and � � 1=10 for the initial wave packet.

In Fig. 1 the sum of entropies, S��t� � S��t�, and the
autocorrelation function, jA�t�j, are shown for an initial
wave packet with x0 � 0:5 and p0 � 400�. At early times,
the Gaussian wave packet evolves quasiclassically, but in a

few periods the quantum and classical wave-packet
trajectories start moving apart [Fig. 1(b)], the classical
component of the wave function being defined as
 cl�x; t� �

P
nanun�x�e

�i2�nt=Tcl [5]. For longer time
scales, a large amplitude modulation is superimposed on
the quasiperiodic oscillations [Fig. 1(a)]. In this long-time
regime, the wave packet initially spreads and delocalizes
while undergoing a sequence of fractional revivals with the
creation of subpackets, each of them similar to the initial
one so that the sum of the entropies reaches a relative
minimum and the modulus of the autocorrelation function
a relative maximum. The most important fractional reviv-
als are denoted by vertical dashed lines. It can be observed
that the identification of some fractional revivals from the
autocorrelation function is not so clear-cut as compared
with the entropy approach (see, for example, the cases t �
pTrev=q with q � 7 or 9).

We have also investigated the interesting initial condi-
tion x0 � 0:8L and p0 � 0, for which there is no classical
periodic motion. Snapshots of the numerical simulation of
the position-space probability density are given in Fig. 2 at
several times. It is apparent from the bottom panel of Fig. 3
that the sum of entropies has a minimum at the main
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FIG. 1 (color online). Time dependence of jA�t�j2 and S��t� �
S��t� for an initial Gaussian wave packet with x0 � L=2, p0 �

400�, and � � 1=10 in an infinite square well. (a) Long-time
dependence. The main fractional revivals are indicated by ver-
tical dotted lines. (b) First classical periods of motion. Quantum
wave packets are represented by solid lines and their classical
component by dashed lines.
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fractional revivals, denoted by vertical dashed lines, except
for the case t � Trev=7, where the position-space probabil-
ity density has a shape compatible with a collapsed wave
function (Fig. 2). The autocorrelation function, as plotted
in the top panel of Fig. 3, fails to show the fractional
revivals occurring at, for example, t=Trev � 1=6, 1=8,
and 3=10. This discrepancy can be traced back to the fact
that information entropies take into account individual
mini-Gaussian packets independently of their relative po-
sitions, whereas the autocorrelation function depends on
the relative position between the initial wave packet and
the evolved one.

Next, we study the behavior of these same quantities in
other physical situations. Consider a particle bouncing on a
hard surface under the influence of gravity, that is, a
particle in a potential V�z� � mgz, if z > 0 and V�z� �
�1 otherwise. Upon introducing the characteristic gravi-
tational length lg � �@=2gm2�1=3 and defining z0 � z=lg
and E0 � E=mglg, as in [19], the eigenfunctions and ei-
genvalues are given by E0n � zn, un�z0� �N nAi�z0 � zn�
with n � 1; 2; 3; . . . , where Ai�z� is the Airy function,�zn
denotes its zeros, and N n is the un�z0� normalization
factor. Very accurate analytic approximations to zn and
N n can be found in [19]. Consider now an initial
Gaussian wave packet localized at a height z0 above the
floor, with a width� and an initial momentum p0 � 0. The
corresponding coefficients in Eq. (1) can be obtained ana-
lytically [19], and the classical period and the revival time
are Tcl � 2

�����
z0
p

and Trev � 4z2
0=�, respectively.

The temporal evolution of the total entropy and of the
autocorrelation function was computed numerically for the
initial conditions z0 � 100, � � 1, and p0 � 0 (see
Fig. 4). For that, the corresponding wave packet in mo-
mentum space was obtained numerically by the fast
Fourier transform method. One can see in the bottom panel

of Fig. 4 that the reformation of subpackets at fractional
revivals is captured by the successive relative minima of
S��t� � S��t�. Similar information is provided by the,
somewhat less clear, sequence of relative maxima of
jA�t�j2 (top panel of Fig. 4).

Last, we address the case of a diatomic molecule, the
vibrational dynamics of which is known to be well ap-
proximated by the Morse potential, V�x� � D�e�2�x �
2e��x�. Here, x � r=r0 � 1, r is the internuclear distance,
r0 is the equilibrium bond distance, D is the dissociation
energy, and � is a range parameter. Defining � ������������

2	D
p

r0=�@ and s � 2�
��������������
�E=D

p
, the associated eigenval-

ues and eigenfunctions for bounded states can be written as
[20]  �n �
� � Ne�
=2
s=2Lsn�
�, En � �D��� n�
1=2�2=�2, with 
 � 2�e��x, 0< 
<1, and n �
0; 1; . . . , [�� 1=2], [x] being the integer part of x. Lsn�
�
are the Laguerre polynomials and N is a normalization
factor (see [20]).

We consider the HI molecule, for which � � 2:07932,
D � 0:1125 a:u:, r0 � 3:04159 a:u:, with the reduced
mass 	 � 1819:99 a:u:. The number of bound states is
��� 1=2	 � 1 � 30, and the classical period and the re-
vival time are given by Tcl � Trev=�2�� 1� and Trev �
2��2=D, respectively. Notice that in this case the autocor-
relation function turns out to be symmetric about Trev=2
[21]. As an initial wave packet, we take a superposition of
Morse eigenstates assuming a Gaussian population of vi-
brational levels jcnj2 � exp��n� n0�

2=�	=����1=2, with
n0 � 7, � � 3. As in the quantum bouncer case, the fast
Fourier method is used to compute the entropy in the
momentum space. These system parameters lead to the
entropy and autocorrelation function depicted in Fig. 5,
where the occurrence of fractional revivals at t � 1=6, 1=3,
2=3, and 5=6 is transparent at first sight in the bottom
panel, in contrast with the information provided by the
autocorrelation function (top panel).
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FIG. 2 (color online). Snapshots of the probability density in
position space for an initial Gaussian wave packet with x0 �
0:8L, p0 � 0, and � � 1=10 in an infinite square well and at
different fractional revival times.

1/
6

1/
5

1/
2

3/
8

1/
3

1/
7

1/
8

3/
10

1/
10

1/
4

2/
5

3/
8

0

0.5

1

|A
(t

)|2

1/
6

1/
5

1/
2

1/
3

1/
4

1/
7

1/
8

3/
10

1/
10 3/

8
2/

5
3/

8

t/T
rev

2

2.5

3

S
ρ(t

)+
S γ(t

)

FIG. 3. Time dependence of (top panel) jA�t�j2 and (bottom
panel) S��t� � S��t� for an initial Gaussian wave packet in an
infinite square well. Parameters as in Fig. 2.
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In conclusion, we have found that the manifestation of
fractional revivals in the long time-scale evolution of
quantum wave packets reflects in the sum of information
entropies in conjugate spaces, which clearly shows relative
minima at the fractional revival times, thus providing a
useful tool to reckon with for visualizing fractional reviv-
als, complementary to the conventional autocorrelation
function. These minima appear independently of the rela-
tive position of the subpackets that configure the wave
packet at the fractional revival time and are rigorously
bounded from below. It would be very interesting to carry
out a more systematic study extending this approach to
systems with two or more quantum numbers.
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