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We propose a new method to determine the mass and width differences of the two D meson mass
eigenstates as well as the CP violating parameters associated with D0 � �D0 mixing. We show that an
accurate measurement of all the mixing parameters is possible for an arbitrary CP violating phase, by
combining observables from a time dependent study of D decays to a doubly Cabibbo suppressed mode
with information from a CP eigenstate. As an example we consider D0 ! K�0�0 decays where the K�0 is
reconstructed in both K��� and KS�

0. We also show that decays to the CP eigenstate D! K�K�

together with D! K��� decays can be used to extract all the mixing parameters. There is a fourfold
ambiguity in the solutions for x and y in both the cases. A combined analysis using D0 ! K�0�0 and
D! K�K� can also be used to reduce the ambiguity in the determination of parameters.
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Evidence for mixing in the neutral D meson system has
recently been reported [1–3] by the Belle and BABAR
collaborations. These experiments find nonvanishing width
and mass differences between the two neutral D mass
eigenstates assuming negligible CP violation. In this
Letter we propose a method to determine all the mixing
parameters accurately allowing for arbitrary CP violation.

Within the standard model CP violation in the D system
is negligible. Hence observation of CP violation would be
a good signal for new physics (NP) [4]. While no CP vio-
lation has been seen in D� �D mixing [3], with the current
precision large possible NP contributions are not ruled out.

We show that using the doubly Cabibbo suppressed
(DCS) mode D! K�0�0 and its conjugate modes, we
can solve for all the D� �D mixing parameters. This is
possible if the K�0= �K�0 is reconstructed both in the self-
tagging K��� mode and in the CP eigenstate KS�0 mode.
While the CP eigenstates D! K�K� cannot alone be
used to determine all the mixing parameters, we demon-
strate that minimal additional information from DCS
modes allows determination of all parameters. This ap-
proach may provide the optimal method to determine all
the parameters with current data. In both these cases, the
parameters can be determined accurately even in the limit
of a small or vanishing CP violating mixing phase�. It has
recently been proposed to use the singly Cabibbo sup-
pressed (SCS) D! K�K modes to determine the mixing
parameters [5,6]. However, if � is zero, these methods
would be feasible only if the strong phase involved is
measured elsewhere.

Our study of the various modes allows us to conclude
that in the limit of small �, an accurate measurement of all
mixing parameters is possible only if the method also
allows the determination of the parameters in the case� �
0. While mixing parameters can be determined using de-
cays to SCS non-CP eigenstates alone, an accurate mea-
surement of mixing parameters in the limit of small � is

possible, only by adding information from decays to
CP-eigenstates or if the strong phase is measured indepen-
dently elsewhere [5–10]. The D! K�0�0 modes are an
example where it is possible to measure all the mixing
parameters and the strong phase using only related final
states, thereby reducing systematic errors. The methods
discussed in this Letter do not have systematic errors
associated with the parameterization of the resonant con-
tent of the Dalitz plot [3] and hence are model independent.

The neutral D mass eigenstates are related to the weak
eigenstates by, jD1;2i � pjD0i � qj �D0i. The mass and
width differences of these eigenstates are popularly written
[11] in terms of the dimensionless variables,

 x �
�M

�
�
M1 �M2

�
and y �

��

2�
�

�1 � �2

2�
;

where � is the average of the widths of the two mass
eigenstates. If the magnitude of q=p differs from unity
and/or the weak phase � � arg�q=p	 is nonvanishing,
this would signal CP violation. We consider mixing to be
the only source of CP violation and assume that the decay
amplitudes themselves have no weak phase [12].

In the limit x
 1, y
 1, and �t
 1, the time depen-
dent decay rates for a D0 decaying to a final state f and
�D0 ! �f have the form

 jA�D0�t	!f	j2�e��t�Xf�Yf�t�Zf��t	2����; (1)

 jA� �D0�t	! �f	j2�e��t� �Xf� �Yf�t� �Zf��t	2����: (2)

We first consider the DCS mode D0 ! K�0�0 and its
conjugate mode �D0 ! �K�0�0, with the K�0= �K�0 recon-
structed in the self-tagging K��� modes. The coefficient
functions of the constant, linear, and quadratic terms in
(�t) in the time dependent decay rates are given by,

 XK�� � �XK�� � jAK��j2r2
K��; (3)
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 YK�� �
��������qp

��������jAK��j2rK���y0K�� cos�� x0K�� sin�	; (4)

 

�Y K�� �

��������pq
��������jAK��j2rK���y0K�� cos�� x0K�� sin�	; (5)

 ZK�� �
��������qp

��������
2
jAK��j2

x2 � y2

4
(6)

and

 

�Z K�� �

��������pq
��������

2
jAK��j

2 x
2 � y2

4
; (7)

where,

 x0K�� � �x cos�K�� � y sin�K��	; (8)

 y0K�� � �y cos�K�� � x sin�K��	; (9)

with AK�� � A�D0 ! �K�0�0	 and the ratio of the DCS to
CF amplitude defined as

 � rK��e
�i�K�� �

A�D0 ! K�0�0	

A�D0 ! �K�0�0	
�
A�D0 ! K�0�0	

A� �D0 ! K�0�0	
:

The amplitude jAK��j can easily be measured using the
time integrated rate for the Cabibbo favored (CF) mode
D0 ! �K�0�0 which is given by,

 

Z 1
0
jA�D0�t	 ! �K�0�0	j2dt �

jAK��j2

�
; (10)

where terms of the order of x2 or y2 and rK��x or rK��y are
neglected compared to unity, as these are expected to be
O�10�4	 or less. The ratio rK�� can be determined using
Eqs. (3) and (10). Also, f2 � x2 � y2 and jq=pj can be
readily determined from the observables ZK�� and �ZK��.

The two linear terms in the time dependent DCS decay
rates YK�� and �YK�� may be reexpressed in terms of two
more convenient observables Y��	K�� and Y��	K�� as follows

 Y��	K�� �
�YK��jqj2 � YK��jpj2

2rK��jAK��j2jqjjpj
� y0K�� cos�; (11)

 Y��	K�� �
�YK��jqj

2 � YK��jpj
2

2rK��jAK��j
2jqjjpj

� x0K�� sin�: (12)

Note that the observable Y��	K�� may be difficult to measure
in the small � limit.

The K�0= �K�0 in the final state could also have been
reconstructed in the neutral KS�0 mode, resulting in an
additional observable. A unique feature of the final state
KS�

0�0 is that it includes contributions from both K�0�0

as well as �K�0�0 states; the amplitude for this final state is
thus a sum of the CF and DCS amplitudes,

 jAKs��j
2 � jA�D0 ! KS�

0�0	j2

� jAK��j2�1� r2
K�� � 2rK�� cos�K��	: (13)

Since the decay mode involves two neutral pions it will not
be easy to perform a time dependent study. Hence, we
consider only the time integrated decay rate for this
mode. The amplitudes A�D0 ! KS�0�0	 and A� �D0 !
KS�0�0	 are equal since KS�0�0 is a CP eigenstate.
Hence, the time integrated decay rate for D0 ! KS�0�0

is given by
 Z 1

0
jA�D0�t	!KS�0�0�j2dt�

jAKs��j
2

�

�
1�

q
p
�ycos��xsin�	

�
�
jAK��j

2

�

�
1�

q
p
�ycos��xsin�	�2rK��cos�K��

�
;

(14)

where, terms of order x2, y2, and rK��x, rK��y as well as
r2
K�� are once again neglected compared to unity.

Using Eqs. (11) and (12), one obtains the following
solutions for tan2� and y02K��

 tan 2� �
2f2 �FK�� �

����������������������������������������
FK��

2 � 4f2Y��	2K��

q

FK�� �
����������������������������������������
FK��

2 � 4f2Y��	2K��

q ; (15)

 y02K�� �
FK�� �

����������������������������������������
FK��

2 � 4f2Y��	2K��

q
2

; (16)

where, F K���f2�Y��	2K�� �Y
��	2
K�� . Theambiguity in the so-

lutions of the quadratic equations in tan2� and y02K�� is
fixedbythe correct limiting solution in the��0 limit. Fur-
ther, expressing cos�K�� in terms of x, y, and x0K��, y0K��,
Eq. (14) may be rewritten as a quadratic equation in x=y,

 �B2 � �2

�
x
y

�
2
� 2AB

x
y
� A2 � �2 � 0; (17)

where,

 A � 2rK��y0K�� �
��������qp

��������
Y��	K��f

2

y0K��
;

B � 2rK��x0K�� �
��������qp

��������
Y��	K��f

2

x0K��
;

� �
�
Br�D0 ! KS�

0�0	

Br�D0 ! �K�0�0	
� 1

�
f;

(18)

allowing x=y to be solved with a fourfold ambiguity. x and
y can thus be individually determined using f. The solution
obtained is finite even if � � 0, with a correction term of
order Y��	K��. Hence an accurate estimation is possible even
if � is tiny. We show below that the ambiguity in x=y can
be reduced if information from K�K� modes is added as
well.

We next consider the time dependent decay of a D
meson to a SCS, CP eigenstate such as D! K�K� or
D! ����. To be specific, we will consider only the
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K�K� final state, but the conclusions can be straightfor-
wardly applied to any other SCS-CP eigenstate. For this
final state, the strong phase is identically zero, and hence,
the coefficients of the constant and linear terms in (�t),
defined using the time dependent decay in Eq. (1) reduce to
the simple form

 XKK � �XKK � jAKKj2; (19)

 YKK � �
��������qp

��������jAKKj2��x sin�� y cos�	; (20)

 

�Y KK � �

��������pq
��������jAKKj2�x sin�� y cos�	: (21)

Unlike the DCS modes where the term quadratic in �t is
enhanced by the ratio of CF to DCS rates, in the SCS
modes all time dependent terms are of the same order in
sin�c; hence, quadratic and higher terms in �t cannot be
extracted. Assuming jq=pj � 1 and � � 0, the linear term
in �t can directly measure y as has been done in Ref. [1].
However, the time dependent study of only the SCS CP
eigenstates does not allow x to be determined, even in the
limit jq=pj � 1 and � � 0.

We will show that if we also include in this analysis the
quadratic terms in (�t) from the time dependent decay rates
of DCS modes such as K�, all the mixing parameters can
be solved without approximation. For D0 ! K��� and
�D0 ! K���, the coefficient functions of the quadratic

terms in (�t) will be analogous to those for the K��
mode given in Eq. (6). Hence, the corresponding observ-
ables ZK� and �ZK� readily determine jq=pj and f2 � x2 �
y2. Alternatively, jq=pj and f2 could be measured using
time integrated wrong sign relative to right sign semilep-
tonic decay rates. Having obtained jq=pj and f2, � and
x=y can easily be determined from D! K�K�. Using
Eqs. (19)–(21), which can be reexpressed as

 Y��	KK �
�YKKjqj2 � YKKjpj2

2XK�jqjjpj
� �y cos�; (22)

 Y��	KK �
�YKKjqj

2 � YKKjpj
2

2XK�jqjjpj
� �x sin�; (23)

the solution for x2=y2 and � can be straightforwardly
written
 

x2

y2 �
F KK � 2Y��	

2

KK �
�����������������������������������
F 2

KK � 4f2Y��	
2

KK

q
2Y��	

2

KK

;

tan2� �
2f2 �F KK �

�����������������������������������
F 2

KK � 4f2Y��	
2

KK

q

F KK �
�����������������������������������
F 2

KK � 4f2Y��	
2

KK

q ;

where F KK � f2 � Y��	2KK � Y
��	2
KK . We once again exam-

ine in detail the solution for the case of small �. If � is
small, the measured value of Y��	KK will be small. The above

solutions can then be written as a series in Y��	2KK :
 

x2

y2 �
f2 � Y��	

2

KK

Y��	
2

KK

�
Y��	

2

KK f
2

Y��	
2

KK �f
2 � Y��	

2

KK 	
�O�Y��	

4

KK 	;

tan2� �
Y��	

2

KK

f2 � Y��	
2

KK

�O�Y��	
4

KK 	;

and therefore x2=y2 is finite even for small �.
As mentioned earlier, if information from K�K� modes

is added to that from the K�� modes, a reduction in
ambiguity is possible. If the observables Y��	KK and Y��	KK
are used, then cos�K�� can be obtained purely in terms
of observables directly from Eq. (14). Knowing cos�K��,
Eqs. (11), (12), (22), and (23), can be used to get

 

x2

y2
�
�Y��	K�� � cos�K��Y

��	
KK 	

2

Y��	2KK �1� cos2�K��	
:

Combining this with the sum x2 � y2, x2, and y2 can be
individually determined. Further, Eqs. (23) and (12) can be
used to obtain

 

y
x
�

�1

sin�K��

�Y��	K��

Y��	KK

� cos�K��

�
; (24)

which helps in reducing the ambiguities in x and y from
fourfold to twofold.

Recently a method was proposed [5] to determine all the
mixing parameters using the D! K�K modes. This SCS
mode, unlike the K�K� mode, it is not a CP eigenstate.
Hence, one can study time dependence in all the four
modes:D0 ! K��K� and �D0 ! K��K�. The coefficients
of the constant and linear terms in (�t) may be written as
 

YK��K� �
��������qp

��������jAK�Kj2rK�K�y0K��K� cos��x0K��K� sin�	;

�YK��K� �
��������pq

��������jAK�Kj2rK�K�y0K��K� cos��x0K��K� sin�	;

YK��K� �
��������qp

��������jAK�Kj2rK�K�y0K��K� cos��x0K��K� sin�	;

�YK��K� �
��������pq

��������jAK�Kj2rK�K�y0K��K� cos��x0K��K� sin�	;

XK��K� � �XK��K� � jAK�Kj
2;

XK��K� � �XK��K� � jAK�Kj
2r2
K�K; (25)

where, AK�K � A�D0 ! K��K�	 � A� �D0 ! K��K�	
and rK�K is defined as

 � rK�Kei�K�K �
A� �D0 ! K��K�	

A�D0 ! K��K�	
�
A�D0 ! K��K�	

A� �D0 ! K��K�	
:

It may also be noted that y0K��K� and x0K��K� are different
from y0K��K� and x0K��K� and are defined as

 x0K��K�;K��K� � �x cos�K�K � y sin�K�K	;

y0K��K�;K��K� � �y cos�K�K � x sin�K�K	:
(26)
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One may conclude that the six observables in Eqs. (25) can
be used to evaluate the six parameters jAK�Kj2, r2

K�K, x, y,�
and �K�K assuming the value of jq=pj from elsewhere.
However, note that if the mixing phase � � 0, then, the
number of observables reduces to four (since now,
jqj2 �YK��K� � jpj

2YK��K� and jqj2 �YK��K� � jpj
2YK��K�)

and a solution of all the five parameters is not possible
without some additional information. Moreover, for
small but nonvanishing � the solution for the ratio x2=y2

will be inaccurate as it will depend on the ratio of two
very small observables. To see this, let us define,
Y��	K��K� � y0K��K� cos�, Y��	K��K� � x0K��K� sin�, Y��	K��K� �

y0K��K� cos�, and Y��	K��K� � x0K��K� sin�, which can all be
determined in terms of observables using Eqs. (25). It then
follows that

 

x2

y2
�
�Y��	K��K� � Y

��	

K��K�	�Y
��	

K��K� � Y
��	

K��K�	

�Y��	K��K� � Y
��	
K��K�	�Y

��	
K��K� � Y

��	
K��K�	

: (27)

It is clear that the right-hand side involves the ratio of two
small quantities when � is small. It is easy to see that this
situation is easily alleviated if �K�K is measured elsewhere
[7]. In fact, the knowledge of �K�K not only allows the
additional determination of jq=pj [6], but also enables an
accurate measurement of mixing parameters.

We now estimate the values of the mixing parameters
that can be obtained using the current data for D!
K�K�=���� [1] and the world average for x2 � y2

[13]. Assuming jq=pj � 1, we obtain Y��	KK � 0:0131�

0:0041, Y��	KK � �0:0001� 0:0034 and f2 � 0:000 42�
0:000 22, resulting in jxj � �1:57� 0:56	 � 10�2, jyj �
�1:31� 0:41	 � 10�2 and value (up to ambiguities) of
� � ��0:36� 12:36	o. We emphasize that our method
allows the determination of mixing parameters even for
jq=pj � 1; the choice jq=pj � 1 has been made here, only
due to lack of complete tabulated data.

An estimate of the precision to which the mixing pa-
rameters can be measured, using the D! K�� modes,
requires the number of reconstructed D! K�0�0 !
K����0 events. While a branching fraction for this
mode has not yet been reported, about 500 events (in
230 fb�1) for the mode D0 ! K���� ! K��0��, have
been observed [14]. We present our estimates using two
representative values for the ratio of DCS modes

 

B�D0 ! K�0�0 ! K����0	

B�D0 ! K���� ! K��0��	
� �0:4; 1:2	:

These values are chosen to be of the order 0.85, the
measured [15] ratio of corresponding CF branching frac-
tions. With an integrated luminosity of 1 ab�1 at an e�e�

B factory we expect about (870, 2609) D0 ! K�0�0 !
K����0 events. Interpolating the errors in D! K���

and assuming � � � � 0, the approximate errors on jxj2

and jyj are expected to be �4:7; 2:7	 � 10�4 and
�8:9; 5:2	 � 10�3, respectively.

We have proposed a new method to determine the D0 �
�D0 mixing parameters x, y, jq=pj and � for arbitrary

values of �. The DCS mode D0 ! K�0�0 reconstructed
in two final states (K����0 and KS�0�0) enables the
determination of all the mixing parameters. For the
KS�0�0 mode, only time integrated measurements are
used, while for the K����0 mode time dependent mea-
surements are required. We also show that decays to the
CP eigenstate D! K�K� together with D! K��� can
be used to extract all the mixing parameters. There is a
fourfold ambiguity in the solutions for x and y in both the
cases. By combining measurements of D! K�0�0 with
results on D! K�K� the ambiguity in the solutions for x
and y can be reduced from fourfold to twofold. We esti-
mate that jxj, jyj and � can be measured with precision of
order 0:6� 10�2, 0:4� 10�2 and 12� respectively, using
data available at present. It should be possible to determine
jxj, jyj to order 7� 10�4, 4� 10�4 respectively and � to
about 1� at a Super-B factory with an integrated luminosity
of 50 ab�1 [16].
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