
Self-Regulation of Solar Coronal Heating Process via the Collisionless Reconnection Condition

Dmitri A. Uzdensky*
Department of Astrophysical Sciences, Princeton University and Center for Magnetic Self-Organization (CMSO),

Princeton, New Jersey 08544, USA
(Received 29 June 2007; published 26 December 2007)

I propose a new paradigm for solar coronal heating viewed as a self-regulating process keeping the
plasma marginally collisionless. The mechanism is based on the coupling between two effects. First,
coronal density controls the plasma collisionality and hence the transition between the slow collisional
Sweet-Parker and the fast collisionless reconnection regimes. In turn, coronal energy release leads to
chromospheric evaporation, increasing the density and thus inhibiting subsequent reconnection of the
newly reconnected loops. As a result, statistically, the density fluctuates around some critical level,
comparable to that observed in the corona. In the long run, coronal heating can be represented by
repeating cycles of fast reconnection events (nanoflares), evaporation episodes, and long periods of slow
magnetic stress buildup and radiative cooling of the coronal plasma.
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This Letter is devoted to the problem of solar coronal
heating (see Ref. [1] for a recent review), viewed in the
context of Parker’s nanoflare model [2]. Since the main
heating process in this model is magnetic reconnection, I
will first summarize the recent progress in reconnection
research achieved in the past 20 years. Even though a
complete picture of reconnection is still not available, there
is now consensus about some of its most important aspects.
My main goal is to apply this new knowledge to the coronal
heating problem.

First, I want to emphasize the importance of a realization
by Petschek [3] that the main bottleneck in the classical
Sweet-Parker [4,5] reconnection model is the need to have
a reconnection layer that is both thin enough for the
resistivity to be important and thick enough for the plasma
to be able to flow out. Furthermore, Petschek [3] proposed
that this difficulty can be mitigated if the reconnection
region has a certain substructure—the Petschek configu-
ration, with four shocks attached to a central diffusion
region. This results in an additional geometric factor lead-
ing to faster reconnection. This idea is especially important
for astrophysical systems, including the solar corona, irre-
spective of the actual microphysics inside the layer. Indeed,
the system size L is usually much larger than any micro-
scopic physical scale �, e.g., the ion gyroradius �i, the ion
collisionless skin depth di � c=!pi, or the Sweet-Parker

layer thickness �SP �
���������������
L�=VA

p
. Therefore, a simple

Sweet-Parker-like analysis would give a reconnection
rate vrec=VA scaling as �=L� 1, and hence would not
be rapid enough to be of any practical interest. Thus, we
come to a conclusion that Petschek’s mechanism (or a
variation thereof) is necessary for sufficiently fast large-
scale reconnection.

Recently, however, several numerical and analytical
studies (e.g., [6–16]) and laboratory experiments [17]
have shown that, in resistive MHD with a uniform (and,
by inference, Spitzer) resistivity, Petschek’s mechanism

does not work; the slow Sweet-Parker scaling applies in-
stead. In other words, in the collisional regime, when
classical resistive MHD applies, one does not get
Petschek’s fast reconnection.

It is then natural to ask now whether fast reconnection is
possible in a collisionless plasma where resistive MHD is
not valid. The answer now appears to be ‘‘yes.’’ First, in
space and solar physics fast collisionless reconnection
events have been observed for a long time. More recently,
it has also been seen in laboratory experiments [17,18]. In
addition, several theoretical and numerical studies have
recently indicated that fast Petschek-like reconnection
does indeed take place in the collisionless regime.
Moreover, there may even be two physically distinct
mechanisms for fast collisionless reconnection: (i) Hall
effect (e.g., [9,12,19–24]) and (ii) spatially localized
anomalous resistivity (e.g., [7,8,13–16,25–27]). At
present, it is still not clear which of them operates under
what conditions and how they interact with each other.
However, both of these mechanisms seem to work and
both seem to involve an enhancement due to a Petschek-
like configuration. Thus, I believe it is safe to say that a
Petschek-enhanced fast reconnection does indeed happen
in the collisionless regime.

To summarize, there are two regimes of magnetic re-
connection: the slow Sweet-Parker reconnection in resis-
tive MHD with classical collisional resistivity and the fast
Petschek-like collisionless reconnection.

Now, how can one quantify the transition between
these two regimes? First, consider the case with a relatively
weak (or zero) guide field, Bz & B0, where B0 is the re-
connecting field component. Then, the condition for fast
collisionless reconnection can be formulated (e.g.,
[9,15,18,24,27,28]) roughly as

 �SP < di: (1)
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(Since the discussion in this paper is very approximate, I
will consistently ignore all numerical factors of order 1.)

Expressing resistivity that enters via �SP in terms of the
Coulomb-collision electron mean-free path �e;mfp, one gets
[18]:

 

�SP

di
�

�
L

�e;mfp

�
1=2
�
�
me

mi

�
1=4
; (2)

where � is the ratio of the plasma thermal pressure (2neTe)
at the center of the layer to the reconnecting magnetic field
pressure (B2

0=8�) outside of the layer. The condition of
force balance across the layer (in the absence of a strong
guide field) requires � ’ 1, where we neglected the con-
tribution due to the upstream gas pressure. Then, the above
fast collisionless reconnection condition becomes

 L < Lc �
��������������
mi=me

q
�e;mfp ’ 40�e;mfp: (3)

Note that, by construction, the mean-free path that enters
here is due to classical Coulomb collisions. It is given by
�e;mfp ’ 7� 107 cm n�1

10 T
2
7 , where we took log� ’ 20 and

where n10 and T7 are the central layer density ne and
temperature Te in units of 1010 cm�3 and 107 K, respec-
tively. Substituting this into Eq. (3), we get

 L < Lc�n; T� ’ 3� 109 cm n�1
10 T

2
7 : (4)

The strong Te dependence tells us that knowing the
temperature is crucial. Note that ne and Te that enter here
are those at the center of a Sweet-Parker reconnection layer
and are not known a priori. Therefore, we would like to
cast condition (4) in an alternative form that would involve
only the ambient plasma parameters, such as the far-
upstream values of the plasma density, temperature, and
magnetic field. Now, the cross-layer pressure balance
(2neTe � B2

0=8�), valid in the zero-guide-field case, pro-
vides us with one relationship between the central ne and
Te, and so, by itself, it is not sufficient. Indeed, this
condition only tells us that the thermal pressure at the
center of the layer needs to be raised to a certain level to
balance the outside magnetic pressure, but it does not tell
us whether this is achieved by increasing the density or the
temperature. In order to break this degeneracy, we need to
consider also the equation of energy conservation. The
logic of our model dictates that this analysis be done in
the collisional Sweet-Parker regime. At the minimum, this
analysis should include Ohmic heating and heat advection
and an estimate of various possible energy-loss mecha-
nisms, such as radiation and electron thermal conduction.
In particular, it can be shown [28] that (i) on the time that a
fluid element spends inside the layer (the Alfvén transit
time �A � L=VA), Ohmic heating converts to heat just
enough magnetic energy to raise Te to the level required
by the pressure balance, without the need to increase the
density substantially, (ii) for the solar coronal conditions,
radiative losses are negligible on the Alfvén time scale,
(iii) the energy losses due to parallel electron thermal

conduction can be neglected provided that the layer is
collisional, in the sense of Eq. (3), and (iv) the energy
losses due to the perpendicular electron thermal conduc-
tion are only marginally important at best. All these find-
ings lead us to the conclusion that, once the condition
L> 40�mfp is satisfied and hence the system is in the
collisional Sweet-Parker regime, the energy equation can
be regarded basically as a balance between Ohmic heating
and advection. As a result, the plasma density in the center
of the layer should remain roughly comparable to the
ambient coronal density, whereas the temperature should
increase dramatically. In fact, Ohmic heating is enough to
raise the temperature up to the ‘‘equipartition’’ level that
depends only on the ambient density and upstream mag-
netic field B0, and is insensitive to the ambient coronal
temperature:

 Te � T
eq
e �

B2
0=8�

2kBne
’ 1:4� 107 K B2

1:5n
�1
10 ; (5)

where B1:5 � B0=�30 G�. This estimate applies only as
long as the resulting value is much higher than the ambient
temperature (typically of the order of 2� 106 K for the
solar corona), which means that the ambient plasma �with
respect to the reconnecting magnetic field should be & 1.
Using this estimate, the collisionless reconnection condi-
tion can finally be written as [28,29]

 L < Lc�n; B0� � 6� 109 cm n�3
10 B

4
1:5: (6)

In this form, the fast-reconnection condition is particularly
useful because it involves only the global quantities char-
acterizing a given reconnecting system: its global length L,
the reconnecting component of the magnetic field B0, and
the ambient plasma density ne.

Next, let us consider the strong guide field case, Bz 	
B0, which is in fact more relevant to the problem of solar
coronal heating. Although some of the arguments and
results presented above have to be modified, conceptually,
they remain similar. In particular, the relevant collisionless
reconnection scale becomes the ion-acoustic gyroradius �s
calculated with the total magnetic field Btot ’ Bz (e.g.,
[30]). Correspondingly, the collisionless reconnection con-
dition becomes [31]

 �SP <�s � di�
1=2
e
B0

Bz
; (7)

where, again, �e is based on the central ne and Te and on
the upstream reconnecting field component B0. Once
again, all the quantities entering Eq. (7) are to be estimated
in the collisional Sweet-Parker regime. To do this, first note
that, in the strong guide field case one can no longer use the
cross-layer pressure balance to deduce �e � 1; this is
because a relatively slight compression of the guide field
can always ensure the pressure balance. Moreover, a strong
guide field effectively makes the plasma incompressible,
so that the central ne is equal to the ambient value. But this
still leaves us with the task of evaluating the central elec-
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tron temperature that is needed to determine the Spitzer
resistivity. It turns out, however, that the above energy-
balance arguments for a collisional Sweet-Parker layer still
apply, at least qualitatively [28]. Therefore, the equiparti-
tion estimate for the central temperature, given by Eq. (5),
should still approximately hold; in particular, one should
still have �e � 1. Then, one can repeat the procedure out-
lined above and derive the following approximate condi-
tion for the transition to fast collisionless reconnection in
the strong guide case [28]:

 L< Lc�ne; B0; Bz� �

������
mi

me

s
�e;mfp

�
B0

Bz

�
2

’ 6� 109 cm n�3
10 B

4
1:5

�
B0

Bz

�
2
: (8)

Thus, the main effect of a strong guide field is to reduce the
critical global length Lc by a factor �Bz=B0�

2 	 1; that is,
the collisionless reconnection condition becomes harder to
satisfy. Also, it is interesting to note that, for fixed values of
ne and Bz, Lc becomes very sensitive to the reconnecting
field component: Lc � B6

0.
Let us now discuss the implications of these findings for

the solar corona. As long as flux emergence and braiding of
coronal loops by photospheric footpoint motions continue
to generate current sheets in the corona, magnetic dissipa-
tion in these current sheets results in intermittent heating
[2,32]. Typical dimensions and field strengths of these
current sheets are basically determined by the emerging
magnetic structures and by the footpoint motions. The
main focus of this Letter, then, is on what sets the typical
level of the coronal plasma density and how it relates to the
intermittent nature of energy release in the corona. My
main point is that coronal heating should be viewed as a
self-regulating process that keeps the corona marginally
collisionless in the sense of Eqs. (1)–(8) (see [28,29]).

As a first example of how this works, consider a coronal
current sheet with some given fixed L, B0, and Bz.
Resolving (8) with respect to ne, we can define a critical
density nc below which reconnection switches from the
slow collisional to the fast collisionless regime:

 nc�Bz 	 B0� � 2� 1010 cm�3 L�1=3
9 B4=3

1:5

�
B0

Bz

�
2=3
: (9)

Notice that this value is comparable to the typical densities
observed in the active solar corona. I argue that this is not
just a coincidence. Indeed, if at some initial time the
ambient density ne is higher than nc�L;B0; Bz�, then the
current layer is collisional and reconnection is in the slow
mode. Energy dissipation then is weak; hence, the plasma
gradually cools through radiation and precipitates to the
surface. The density around the given current sheet drops
and, at some point, becomes lower than nc. Then, the
system switches to the fast collisionless regime and the
rate of magnetic dissipation jumps. Next, there is an im-

portant positive feedback between coronal energy release
and the density. A large part of the released energy is
conducted to the surface, where it is deposited in a dense
plasma. This leads to chromospheric evaporation along the
post-reconnected magnetic loops, filling them with a dense
and hot plasma. The density rises and may now exceed nc.
This will shut off any further reconnection (and hence
heating) involving these loops until they again cool
down, which occurs on a longer, radiative time scale.
Thus we see that, although highly intermittent and inho-
mogeneous, the corona is working to keep itself roughly at
the critical density given by Eq. (9). In this sense, coronal
heating is self-regulating [29].

As a second example, consider a situation in which the
initial density is relatively low, so that radiative cooling
rate is much slower than the footpoint twisting rate. Then
one can regard the density as constant between reconnec-
tion events and focus instead on the slow evolution of the
reconnecting magnetic field, caused by the motion of the
footpoints (similar to Refs. [2,33]). Let us consider, for
example, a flux tube, anchored on the solar surface at both
ends, with a fixed strong axial (guide) field Bz and a fixed
volume V. The tube is composed of smaller flux fibrils that
are being wrapped around each other by the photospheric
motions. Over time, this wrapping leads to the formation
and strengthening of current layers. For simplicity, let us
represent this process by a linear growth of the reconnect-
ing field component of a single current sheet of a fixed
length L: B0�t� � �tBz. Here, � parametrizes the rate of
twisting. Let us now try to follow the evolution of this
system. At first, B0 increases steadily in time, while the
density stays constant. This continues until B0 reaches a
critical value that depends on ne according to collisionless
reconnection condition (for fixed L and Bz):

 Bc�ne; L; Bz� � 30 G L1=6
9 n1=2

10 B
1=3
z;2 ; (10)

where Bz;2 � Bz=�100 G�. We assume here that B0 always
stays well below Bz. As soon as this critical value is
reached, the system switches to the fast-reconnection re-
gime and magnetic energy B2

0=8� is rapidly dissipated.
Importantly, part of this energy is not radiated promptly but
is transported by parallel thermal conduction to the solar
surface. This causes an evaporation episode adding new
plasma to the flux tube under consideration. The amount of
plasma added is roughly proportional to the energy re-
leased in a given event, B2

0=8�� B2
c�ne�=8�, which, ac-

cording to (10), is in turn proportional to the density in the
tube just before reconnection: �ne � B2

c�ne� � ne.
Now let us see what happens on a still longer (several

hours) time scale. As a consequence of the first fast-
reconnection event, the current sheet is promptly destroyed
and B0 drops back to nearly zero. The field-line twisting,
however, still continues, and so the process described
above repeats. This time, however, the plasma density in
the tube is higher, and hence the critical magnetic field Bc
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is larger and takes longer time to reach. In particular, taking
the twisting rate � to be constant, the time between sub-
sequent reconnection events scales as �t � ��1Bc�ne�=
Bz � n

1=2
e . Therefore, as long as the relative increase in

density at each step is small, the long-term (t	 �t) evo-
lution can be effectively described by the differential
equation

 

dne
dt
’
�ne�ne�
�t�ne�

�
�����
ne
p

; (11)

and so ne�t� � t2. Correspondingly, the emission measure
of the tube increases as t4.

This growth will continue until one of the following two
effects intervenes. First, as the density builds up, the criti-
cal value of B0 may become so large (a sizable fraction of
Bz) that the equilibrium shape of the entire loop will be
affected. The loop may then undergo the kink instability
and become sigmoidal, which, with further twisting, may
result in a large-scale eruption with a catastrophic energy
release (a large flare).

Alternatively, it may happen that the density just builds
up gradually to a level large enough for radiative cooling
between two subsequent reconnection events to become
important. Indeed, as the density increases, the radia-
tive emission measure increases as n2

e and the time �t
between reconnection events as n1=2

e (see above).
Ignoring for simplicity coronal temperature variations,
the amount of thermal energy lost between two reconnec-
tion events scales as n5=2

e , whereas the amount of thermal
energy gained after each reconnection event is just propor-
tional to B2

c�ne� � ne. At some point, the two will inevita-
bly become comparable. Correspondingly, the amount of
plasma drained due to the gradual radiative cooling will
become equal to that pumped back up into the corona by
each chromospheric evaporation episode. Then, on some
long time scale (but still only as long as �, L, and Bz
remain constant), the evolution of the system can be rep-
resented by repeated cycles that include fast-reconnection
events, followed by chromospheric evaporation episodes,
followed by relatively long (�1 h) periods during which
the free magnetic energy builds up and the plasma gradu-
ally cools down.

I am grateful to E. Blackman, P. Cassak, J. Goodman,
R. Kulsrud, E. Parker, and M. Shay for fruitful discussions
and encouraging remarks. This work is supported by
National Science Foundation Grant No. PHY-0215581
(PFC: Center for Magnetic Self-Organization in
Laboratory and Astrophysical Plasmas).

*uzdensky@astro.princeton.edu
[1] J. A. Klimchuk, Sol. Phys. 234, 41 (2006).
[2] E. N. Parker, Astrophys. J. 330, 474 (1988).
[3] H. E. Petschek, in The Physics of Solar Flares,

Proceedings of the AAS-NASA Symposium, Greenbelt,
MD, 1963, edited by W. N. Hess (NASA, Washington,
DC, 1964), p. 425.

[4] P. A. Sweet, in Electromagnetic Phenomena in Cosmical
Physics, edited by B. Lehnert (Cambridge University
Press, Cambridge, England, 1958), p. 123.

[5] E. N. Parker, J. Geophys. Res. 62, 509 (1957).
[6] D. Biskamp, Phys. Fluids 29, 1520 (1986).
[7] M. Scholer, J. Geophys. Res. 94, 8805 (1989).
[8] M. Ugai, Phys. Fluids B 4, 2953 (1992).
[9] Z. W. Ma and A. Bhattacharjee, Geophys. Res. Lett. 23,

1673 (1996).
[10] D. A. Uzdensky and R. M. Kulsrud, Phys. Plasmas 5, 3249

(1998).
[11] D. A. Uzdensky and R. M. Kulsrud, Phys. Plasmas 7, 4018

(2000).
[12] J. Birn et al., J. Geophys. Res. 106, 3715 (2001).
[13] N. V. Erkaev, V. S. Semenov, I. V. Alexeev, and H. K.

Biernat, Phys. Plasmas 8, 4800 (2001).
[14] D. Biskamp and E. Schwarz, Phys. Plasmas 8, 4729

(2001).
[15] R. M. Kulsrud, Earth Planets Space 53, 417 (2001).
[16] L. M. Malyshkin, T. Linde, and R. M. Kulsrud, Phys.

Plasmas 12, 102902 (2005).
[17] H. Ji et al., Phys. Rev. Lett. 80, 3256 (1998).
[18] M. Yamada et al., Phys. Plasmas 13, 052119 (2006).
[19] M. E. Mandt, R. E. Denton, and J. F. Drake, Geophys. Res.

Lett. 21, 73 (1994).
[20] D. Biskamp, E. Schwarz, and J. F. Drake, Phys. Rev. Lett.

75, 3850 (1995).
[21] M. A. Shay and J. F. Drake, J. Geophys. Res. 103, 9165

(1998).
[22] A. Bhattacharjee, Z. W. Ma, and X. Wang, Phys. Plasmas

8, 1829 (2001).
[23] J. A. Breslau and S. C. Jardin, Phys. Plasmas 10, 1291

(2003).
[24] P. Cassak, M. Shay, and J. Drake, Phys. Rev. Lett. 95,

235002 (2005).
[25] M. Ugai and T. Tsuda, J. Plasma Phys. 17, 337 (1977).
[26] T. Sato and T. Hayashi, Phys. Fluids 22, 1189 (1979).
[27] D. A. Uzdensky, Astrophys. J. 587, 450 (2003).
[28] D. A. Uzdensky, Astrophys. J. 671, 2139 (2007).
[29] D. A. Uzdensky, arXiv:astro-ph/0607656.
[30] J. Egedal, W. Fox, N. Katz, M. Porkolab, K. Reim, and E.

Zhang, Phys. Rev. Lett. 98, 015003 (2007).
[31] P. Cassak, M. Shay, and J. Drake, Phys. Plasmas 14,

054502 (2007).
[32] R. Rosner, W. H. Tucker, and G. S. Vaiana, Astrophys. J.

220, 643 (1978).
[33] P. Cassak, M. Shay, and J. Drake, Astrophys. J. 644, L145

(2006).

PRL 99, 261101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2007

261101-4


