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We propose a model of carrier-mediated ferromagnetism in semiconductors that accounts for the
temperature dependence of the carriers. The model permits analysis of the thermodynamic stability of
competing magnetic states, opening the door to the construction of magnetic phase diagrams. As an
example, we analyze the stability of a possible reentrant ferromagnetic semiconductor, in which
increasing temperature leads to an increased carrier density such that the enhanced exchange coupling
between magnetic impurities results in the onset of ferromagnetism as temperature is raised.
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Ferromagnetic semiconductors (FS) show important and
potentially useful differences from their metallic counter-
parts. For example, if the magnetism in a magnetically
doped semiconductor is mediated by carriers, then changes
in the carrier density induced by light or applied bias may
significantly alter the exchange interaction between the
carriers and magnetic impurities. When this effect is suffi-
cient to turn the ferromagnetism on or off, there arise
intriguing possibilities for light- or bias-controlled ferro-
magnetism [1-4] not possible in conventional ferromag-
netic metals.

Another approach to controlling ferromagnetism in FS
materials is to exploit the strong temperature dependence
of carrier density that is the hallmark of semiconductors.
Despite this dependence, most analysis of FS has assumed
a metallic picture [5,6] in which carrier density is treated as
independent of temperature. Consequently, a number of
experimental features observed in certain FS materials
remain incompletely explained. Examples include the
metal-insulator transition [7] in Mn-doped GaAs, the im-
purity band in oxide FS [8,9], and the resistivity peak in
Mn-doped GaAs observed near the Curie temperature, T,
which is usually attributed to temperature-dependent scat-
tering [10] as in metals [11].

In this Letter we show that each of these features may
originate from the temperature dependence of the carrier
density. We first develop a model of ferromagnetism in
semiconductors that includes the temperature dependence
of the carriers. By providing a way to analyze the stability
of competing magnetic states, this model allows a self-
consistent calculation of the magnetic phase diagram of a
FS. Here we use the model to calculate the temperature-
dependent magnetization of a simple generic FS. In con-
trast to the standard monotonic decay of magnetization
with increasing temperature found in metals, we demon-
strate the possibility of stable “‘reentrant’ ferromagnetism:
as the temperature is increased the higher density of ther-
mally excited carriers can enhance the exchange coupling
between magnetic impurities—and thereby increase the
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magnetization over some range of temperatures. Of course,
whether such a possibility can be realized depends on the
stability of the reentrant phase relative to other magnetic
states. Our model provides a theoretical framework for
computing the free energy of each possible magnetic state.
We begin by considering a FS doped with donors of
density N, and magnetic impurities of density N;. For
simplicity we assume that no acceptors are present, that
electrons are the only carriers, and that the magnetic im-
purities are electrically neutral. The interaction between
electron spins §; and localized impurity spins J jis

He = _rexz5(7i - R)j)Ei : -7/') (1)
LJj

where I'., is the exchange coupling and 7 (Ej) is the
position of the carrier (impurity). We assume a nondegen-
erate semiconductor in which the conduction band is sepa-
rated from the donor level (or impurity band) by &, in the
absence of magnetic order, as in Fig. 1(a). When magnetic
order is present the conduction band and donor level
experience spin splittings of A [12] and A, [13], respec-
tively, as in Fig. 1(b). For simplicity we assume that the
ratio A;/A = v has a fixed, material-specific value.

These spin splittings can arise from either an applied
magnetic field or from the carrier-impurity interaction, and
in general will modify the temperature dependence of the
electron density [14]. We can obtain an expression for the
density n of conduction electrons as follows. Electro-
neutrality requires that n + N = N, where NY is the den-
sity of neutral (nonionized) donors. If we take the effective
density of states in the conduction band as N, = (1/4) X
(2m*kyT/7wh?)3/? [15], then the electroneutrality condition
can be satisfied by introducing the chemical potential w
that satisfies N,exp(u/kgT)cosh(A/2kzT) = N,/[1 +
2expl(u + &4)/kgT]cosh(A,;/2kgT)]. This is equivalent
to a quadratic equation in the electron density, and has the
solution

© 2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.99.257202

PRL 99, 257202 (2007)

PHYSICAL REVIEW LETTERS

week ending
21 DECEMBER 2007

(a) (C)I T T T
\_/ £ |300K

777777777777777 M=0| 2 I 60 K /|

L aE
”””” 5

S

(b) o
ffffffffffffffff A M0 % 40K

Ied I ¥ ko -1 7
””””””””” 4 fszA i3 150 K

0T 02 03 04 05

electron spin s

FIG. 1 (color online). Schematic energy-band structure and
temperature evolution of free energy. (a) In the absence of
magnetization (M = 0) both the conduction band and the donor
level (at — g, relative to the band edge) are unsplit. (b) The onset
of magnetic order (M # 0) leads to spin splitting A of the
conduction band and A, of the donor level . Thick arrows
represent two spin projections. (c) Free energy F vs average
electron spin s. Materials parameters were chosen based on Gd-
doped EuO [21]: T, =40eV:-A3, |gy| =20 meV, N, =
3.5 X 10" cm™3, m* = 2, lattice constant ag = 5.15 A, N; =
4/a(3), v=1,az =8 A, and J = 7/2. Behavior at 40 and 150 K
reveals ferromagnetic states.

n(s, T) = INk(s, T)[V1 + 4/k(s, T) — 1] ()

Here we have expressed the dependence of n on the
splitting A equivalently as a dependence on the average
spin of the conduction electrons, s = (1/2) tanh(A /2kgT).
We have also defined the auxiliary function (s, T)=
(N./Ng)exp(—&y/kpT)(1 — 4s?) D2 /[(1 +25)Y + (1 =
2s)”]. In addition, for later use it is here convenient to
introduce the relative density of conduction electrons
v(s,T) = n(s,T)/N,, so that 0 < p(s, T) < 1.

In the magnetically ordered state, both the conduction
electrons and the electrons bound to donors experience the
field from the ordered impurity spins. The impurity spins in
turn experience both a long-ranged uniform field from the
delocalized conduction electrons and a short-ranged field
from the bound donor electrons. This situation can be
described using two coupled order parameters: the average
spin s of the conduction electrons and the average spin
m = M/N,g;up of the impurities (here M is the magneti-
zation due to the impurities and g; is the electron g factor).

Using these two order parameters, we can write the free-
energy density of the system in the form

F =Fi+ Fe—TaNiN[v(s, T)s + vy(s, T)sylm.
3)

Here F; = F;(m) is the contribution from the entropy of
the impurity spins, and F, = F,(s) is the contribution
from the entropy of the conduction electrons. The former
can be obtained by expressing the free energy of the
impurity spins as a function of an external magnetic field
and then applying a Legendre transformation [16]:

Fi(m) = NikBT[Zma(m) _ |, Sinh[(2 + l)a(m)]}

sinh[a(m)]
4)

where a(m) = B;'(m/J)/2J, and B;'(x) denotes the in-
verse of the Brillouin function [15].

The electron contribution F,(s) can be derived using a
similar approach. We first define the density-weighted
average spin of conduction and donor electrons,

7(5,T) = v(s, T)s +[1 — v(s, T)]sy (5)

where the average spin of donor electrons is given by s, =
(1/2)[(1 + 25)Y — (1 = 29)7])/[(1 + 25)” + (1 — 25)7].
We next invert the function 7(s, T) by solving Eq. (5) for
s = s(7, T). This function can then be used to obtain the
free energy of the conduction and donor electrons:

0 Il1 —2s(7, T) T ©)

/
Fo(s) = kgTN, fﬂm L 2(m 1) 4

The third term in Eq. (3) is the mean-field approximation
for the internal energy described by the Hamiltonian of
Eq. (1) and represents the coupling of the order parameters
s and m. The expression in square brackets makes explicit
the separate contributions from conduction and donor elec-
trons. Since the conduction electrons are delocalized, they
mediate a long-ranged interaction between impurity spins.
In contrast, the interaction between donor electrons and
impurity spins is short ranged and is controlled by a contact
term given by the value of the donor wave function at the
impurity site. We turn now to evaluating this interaction by
deriving an explicit expression for the term w,(s, T) ap-
pearing in Eq. (3).

We use a “two-color” percolation model to represent
the short-ranged interaction between the randomly distrib-
uted donor electrons and impurity spins [17,18]. This is a
generalization of an approach originally proposed for di-
lute ferromagnets [19] and recently applied to magnetic
semiconductors [20]. Within the two-color model, an in-
teraction is counted for each pair of sites whose separation
is less than R. = [B./(47/3)]'3(N;N9)~1/®, where B, =~
2.7 is the average coordination number [17]. The density of
pairs within the infinite percolation network is N,B./2,
where N, = 2/(4mR_/3)? is the average density of donor
and impurity sites in the network.

Within the mean-field approximation, the contribution
of these pairs to the internal energy can be shown to be
Uy = _Fex|¢(0)|2 exp(_2Rc/aB)(1/2)Ncchmsd’ where
(0) is the value of the donor wave function at the origin
[l(0)I> = 1/ a3, for hydrogenic donors]. Comparing this
result to Eq. (3) implies that

vy = [WO)P(N:Ny) ™21 — v)' 2 exp(—2R./ap). (7)

Having now obtained explicit expressions for all the
terms in Eq. (3), we can directly obtain s(T) and m(T) by
minimizing the free energy F. This results in
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1 T N;m 0[(s, T)s]
S _Etanh[ 2y o7(s, T) } ©
_ JU N 9(s, T)s
m = JBJ[—kBT } )

where (s, T) = v(s, T) + v (s, T)s;/s. By expanding
Egs. (8) and (9) for small s and m we obtain an implicit
expression for the critical temperature:

Te = TH0,Tc) /Iy + (1 = y)w(0, T)]V% (10)

where T = (T /kg)[N;N4J(J + 1)/12]"/? is the Curie
temperature in the limit of completely ionized donors [9].

We now turn to exploring the predictions of our model
for a realistic example. We choose materials parameters
approximately corresponding to Gd-doped EuO [21], a
magnetic material known to exhibit strong temperature
dependence of n. Figure 1(c) shows the resulting free
energy F as a function of conduction-electron spin s, at
T = 40, 60, 150, and 300 K. A ferromagnetic state (at
150 K) appears at higher temperature than a paramagnetic
state (at 60 K), and is thus a reentrant ferromagnetic state.
This phenomenon is a direct consequence of the increased
number of thermally excited carriers which sufficiently
increase the exchange coupling between magnetic impuri-
ties to overcome the additional entropic cost of a magneti-
cally ordered state.

Figure 2 shows the temperature dependence of s(7)
and m(T) for these parameters. There are three different
solutions of Eq. (10) for T, as shown. The reentrant
ferromagnetic state exists in the range T, =T = T¢s.
The inset shows the temperature dependence of the com-
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FIG. 2 (color online). Temperature dependence of order pa-
rameters s and m, showing reentrant behavior at 7 = T, as
temperature is raised. Curie temperatures T, ; 3, at which m and
s both vanish, define phase boundaries between two ferromag-
netic and two paramagnetic states. Inset: temperature depen-
dence of the combined average spin from all electrons. Materials
parameters are the same as in Fig. 1.

bined average spin from all electrons (conduction, donor,
and impurity), revealing behavior very different from the
conventional monotonic decay [15].

In the standard theoretical description of FS the ferro-
magnetism is mediated entirely by “free” carriers (usually
holes in the valence band) [5,6]. An important check of our
theory is that it reproduces earlier results obtained in this
limit. We thus consider the case with all donors ionized,
n = N, In this regime the entropy contribution F,(s)
must be replaced with its degenerate counterpart for the
internal energy, Fo(s) = B3nE;/10)[(1 + 2s)%/3 + (1 —
25)°/3], where Ep = (h2/2m*)(37*n)*? is the Fermi en-
ergy. Substituting this expression into Eq. (3) and expand-
ing F in s and m near the Curie temperature, we obtain
Tc = (T%/kg)N;NoJ(J + 1)/12, where Ny = 3n/2Ey is
the electronic density of states at Er. This is the standard
expression for T given as Eq. (7) of Ref. [6].

The possibility of reentrant ferromagnetism in semicon-
ductors was first discussed over 40 years ago [22], and
again recently [23]. In neither case was the thermodynamic
stability of the magnetism discussed. Moreover, the role of
the donor electrons was not included, an omission that can
lead to contradictions. For example, in Ref. [23] it was
assumed that the conduction-electron density has no ex-
plicit dependence on the magnetization. This assumption is
justified only if the spin splitting of the donor level (A,)
and conduction band (A) are equal, i.e., v = 1. However,
the self-consistency equation given in Ref. [23] for the
magnetization of the impurity spins is only correct for
the case y = 0. This can be seen by substituting our
Eq. (8) into Eq. (9) and comparing to the corresponding
equation in Ref. [23]. This internal inconsistency has sub-
stantial consequences. Specifically, for the case y =1,
expanding the self-consistency equation for small magne-
tization in the vicinity of the critical temperature yields
T = T2v(0, T¢). But for the case y = 0, a similar ex-
pansion yields the qualitatively different dependence
Te = T2\/v(0, T¢).

Our theory predicts an unconventional nonmonotonic
M(T), caused by a strong temperature dependence of n.
Such behavior has already been observed in various FS
materials, such as ZnGeP, : Mn chalcopyrites [24], lay-
ered III-VI:Mn compounds [25,26], and in (Fe,Mn)S [27].
These observations have been reported with little, if any,
recognition of their significance. Our work provides a
plausible theoretical explanation for these observations.

In its present form, our model does not include several
physical effects which could alter the magnetic ordering at
low temperature. (1) Hopping and Coulomb fluctuations
will broaden the donor levels into an impurity band [28].
(2) The neutral donors may form bound magnetic polarons
[29] by aligning nearby impurity spins, thereby increasing
g, (the donor level moves down). (3) There could be a
large antiferromagnetic interaction between nearest-
neighbor impurity spins. This would have two consequen-
ces: F in Eq. (3) would acquire a contribution «m?, while
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FIG. 3 (color online). Temperature dependence of order pa-
rameters s and m when percolation is omitted (see text).
Materials parameters are the same as in Fig. 1, except for m* =
2.5.

the argument in the mean-field expression for m in Eq. (9)
would be reduced by a term o m.

All three of these effects would suppress ferromagne-
tism at low temperatures. While the situation is fairly
complex, we can describe it qualitatively by omitting the
percolation term in Eq. (3), i.e., by setting v (s, T) = 0 or,
equivalently, by taking ag — 0 in Eq. (7). Figure 3 shows
the resulting behavior for s(T) and m(T). The striking
feature is that the ferromagnetism is absent at both low
and high temperatures, corresponding to spin-glass and
paramagnetic states, respectively. A similar interpretation
of reentrant ferromagnetism was proposed in Ref. [22] to
explain experimental data on (Li,Mn)Se [30]. Furthermore,
both of the scenarios for reentrant ferromagnetism shown
in Figs. 2 and 3 are consistent with the recent experiments
in (In,Mn)Se [25]. With the change in Mn density there is a
change in the number of peaks in the temperature depen-
dence of dynamic magnetic susceptibility, supporting the
existence of either two or three distinct critical tempera-
tures (see Figs. 2 and 3). While, for simplicity, we have
focused on the parameters for Eu-based semiconductors,
there is a need to explore other FS for possible reentrant
ferromagnetism.

Predictions of reentrant ferromagnetism could also be
directly tested in transport experiments. By using a reen-
trant FS as the spin injector, a nonmonotonic temperature
dependence of the electroluminescence in a spin light-
emitting diode [4], similar to that for s(7) in Figs. 2 or 3,
would be expected. Reentrant behavior could also be de-
tected electrically, without a spin light-emitting diode, by
demonstrating nonmonotonic M(T) in a semiconductor
heterojunction [14,31] that includes a reentrant FS.

Finally, our model affords study of the interplay between
electronic phenomena—such as the metal-insulator tran-
sition (MIT)—and magnetism in FS. Indeed, at the high-
temperature onset of the ferromagnetism (7 = T) one
would expect a surge in n(7T) as the system is cooled below

Tc. This happens because the spontaneous spin splitting of
the band makes the donor level shallower [Fig. 1(b)], or
even merge with the band (MIT). We believe this behavior
to be quite universal for FS materials. The surge of n(T)
manifests itself in a resistivity peak and a dip that have
been observed in a number of experiments [5]. With a
straightforward generalization for the free-electron part
of the free energy to account for finite-temperature Fermi
statistics, our model can provide a self-consistent descrip-
tion of this phenomenon as well.
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