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The effects of intrinsic spin-orbit and Coulomb interactions on low-energy properties of finite width
graphene armchair ribbons are studied by means of a Dirac Hamiltonian. It is shown that metallic states
subsist in the presence of intrinsic spin-orbit interactions as spin-filtered edge states, in contrast with the
insulating behavior predicted for graphene planes. A charge-gap opens due to Coulomb interactions in
neutral ribbons, that vanishes as �� 1=W, with a gapless spin sector. Weak intrinsic spin-orbit
interactions do not change the insulating behavior. Explicit expressions for the width-dependent gap
and various correlation functions are presented.
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Since the discovery of the anomalous quantum Hall
effect in graphene [1,2], the single-layer carbon material
has received ever-growing attention due to its unusual
physical properties and potential technological applica-
tions. The unusual properties stem from the peculiar
band structure of the material, that at low-energies can be
described by a Dirac-type Hamiltonian for massless elec-
trons [3]. For this reason, much of the phenomena associ-
ated with QED can be studied for the first time in a
condensed matter system in a controlled manner, even at
room temperatures. At the same time, as graphene holds
the promise to revolutionize the future of electronics, in-
creasing efforts are made to obtain samples with tailored
properties. In this regard, it is remarkable that in the past
year two groups have already succeeded in fabricating the
first set of graphene ribbons with variable width [4,5] for
systematic studies. As a consequence, it is essential to
understand the properties of the material in confined ge-
ometries as controlled production of graphene nanostruc-
tures is becoming a reality. Moreover, it would also be
interesting to understand the confinement of Dirac fermi-
ons in the presence of interactions as it may have relevant
consequences in other areas of physics.

The purpose of this Letter is to provide precise answers
to two key questions that arise when confinement effects
are important: (i) what are the consequences of the en-
hanced electron-electron interaction on transport proper-
ties of graphene ribbons? and (ii) are there metallic
graphene nanoribbons in the presence of intrinsic spin-
orbit (ISO) interactions? These two issues have received
much attention in the cases of two-dimensional graphene
planes [6–8] and rolled graphene (nanotubes) [9,10], but
no detailed study exists at present for nanoribbons with
defined edges. In this work, we predict that small-
momentum scattering introduced by electron-electron in-
teractions opens a width-dependent charge gap in the
spectrum of half-filled ribbons that vanishes in the limit
of wide ribbons. We also present evidence for an incipient
magnetic order in narrow ribbons, in agreement with recent

experimental measurements [11], and show that these re-
sults are minimally affected by a weak ISO interaction.
Unlike previous numerical results [12], the approach pre-
sented here gives insight into the processes that originate
the gap, allowing a systematic account of the various
scattering processes due to interactions, and provides ex-
pressions for several correlation functions. Furthermore,
we demonstrate that metallic states exist in armchair rib-
bons of special widths even in the presence of ISO inter-
actions and provide expressions for the associated wave
functions. This is a fundamental difference from reported
results on graphene sheets where insulating behavior was
predicted [7].

A generic graphene ribbon has a combination of two
types of edge terminations: armchair and zigzag. Both
edges are associated with characteristic transport behavior
in tight-binding calculations: zigzag ribbons are predicted
to be metallic due to a topological edge state, and armchair
ribbons are predicted to be metallic or insulating depend-
ing on the ribbon’s width [6,13–15]. In what follows we
focus on finite width armchair ribbons.

We describe a graphene ribbon using a hexagonal
Bravais lattice with a unit cell containing two carbon atoms
A and B. An atom A is connected to its nearest neighbor by
~�1 � a�0; 1=

���
3
p
�, ~�2 � �a=2���1;�1=

���
3
p
�, ~�3 � �a=2��

�1;�1=
���
3
p
�, with the lattice unit vectors given by ~ai �

�1=2��ijk� ~�j � ~�k�. The simplest model for electrons in
graphene is given in terms of a nearest-neighbor hopping
tight-binding Hamiltonian H0 �

P
hijitc

y
i cj � H:c:, where

i; j label position and spin degrees of freedom in real space.
The resulting band structure contains six equivalent points
in the Brillouin zone with vanishing density of states, from
which only two are independent (the rest are obtained from
reciprocal lattice vector translations). We choose these two
independent points to be located at K;K0 � � 4�

3a �1; 0�. We
work with a spin-dependent basis, the pseudospin basis
�y;s � �usA; usB�, where the first (second) component rep-
resents the amplitude of the wave function at a lattice A�B�

PRL 99, 256804 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
21 DECEMBER 2007

0031-9007=07=99(25)=256804(4) 256804-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.256804


site, and s labels the spin. In momentum space the
Hamiltonian takes the form

 H0 � t
0 �
�? 0

� �
; (1)

where � � 1� 2 cos�qxa=2�e�i
��
3
p
kya=2 with a spectrum

E�� ~k� � �tj�� ~k�j. At low energies, the Hamiltonian can
be reduced even further to its Dirac form by expanding
�� ~k� around the K;K0 points:

 H0 � v
0 iky 	 kx

�iky 	 kx 0

� �
; (2)

with v � t
���
3
p
=2 (we use @ � 1) and kx � qx � K.

Consider a ribbon of length L along the y direction with
finite width W along x. As shown in [15,16], the wave
function that vanishes at the boundaries x � 0, W0 � W �
a=2, contains two states at (K � kx) and (K0 � kx) where
kx takes the values �kx �

�
3�W

0 � �n. The corresponding

energy is given by E � �v
����������������
k2
y � k

2
x

q
. For ribbon widths

W � �3M� 1�a, a set of linear dispersion (E � �vky)
states appears with wave functions given by

 �s
	 �

������
2

W0

s
sin
�

4�x
3a

�
eikyy������

2L
p

�
1
	i

�
: (3)

This solution defines left (�r��) and right movers (�r��)
for each spin component. At energies below the bulk band
gap (of the order of vF=W 
 0:4 eV forW=a � 10), these
linear modes dominate the physics and they are the only
ones considered in the rest of the Letter.

Effect of Coulomb interactions.—It is known that
Coulomb interactions produce drastic changes in the
ground state of carbon nanotubes resulting in Luttinger
liquid physics at low energies [9,17]. We show next that
they have similar effects for narrow armchair ribbons.

The unscreened Coulomb interaction in two-
dimensional graphene is given by U�x; y� � e2=

��
���������������������������
a2

0 � x
2 � y2

q
�, where a0 
 a=2 is the radius of carbon

pz orbitals and we take the value of � ’ 2:45 appropriate
for a graphene sheet on top of an insulating substrate [10].
The interacting Hamiltonian is Hint � �1=2�

R
dydy0H ,

where

 H �
X
pp0;ss0

Vpp0 �y� y0� 
y;s
p �y� 

y;s0

p0 �y
0� s

0

p0 �y
0� sp�y�;

(4)

with effective one dimensional potentials given by
Vpp0 �y � y0� � a2P

n;n0U��xnn0 ; �ypp0 �j��xn�j
2j��xn0 �j

2,
and �xn;n0 �a�n�n

0 � 1
2�2y=3d�2y0=3d�mod2�, �yp;p0 �

y� y0 � pd�p;�p0 and p � � (p � �) labels the sublat-
tice A (B) and d � a=

���
3
p

. An analysis of the scattering
processes shows that at low energies, small-momentum
transfer processes (long-range part of Coulomb interac-
tion) dominate for reasonable ribbon widths (M � 5),

similarly to carbon nanotubes [9,10]. These forward scat-
tering terms include intersublattice (�yp;�p � y� y0 �
pd) and intrasublattice processes (�yp;p�y�y0). In terms
of �p�y� �

P
s 
y
p;s p;s (electron density at sublattice p),

the Hamiltonian reads

 H �
Z L

0
dy
�
V
2
��y���y� �

�V
2

X
p

�p�y���p�y�
�
; (5)

where � � �A � �B, V � a
��
3
p

2

P
mVp;p�ym�, and �V �

a
��
3
p

2

P
m�Vp;�p�ym� � Vp;p�ym��measures the difference be-

tween intrasublattice and intersublattice interactions.
To solve the above Hamiltonian we use bosonization

[18]. As usual, bosonic fields are introduced:  r;s �
�r;s��������
2�a0

p exp��ikFry� i
���������
�=2

p
��c � s�� � r�c � rs���
,

where � is a Klein factor, �c and �� are charge and spin
bosonic fields (�c and �� are their duals). In terms of the

total charge density (� � @y�c�����
2�
p ) and the spin current (J �

@y�������
2�
p ) the Hamiltonian H��;�� reads

 

H��;�� �
vc=�

2

Z
dy
X
c;�

�
�@y�c=��

2

Kc=�
� Kc=��@y�c=��

2

�

�
�V

4�2a2

Z
dy�cos�

�������
8�
p

�c � 4kFy�

� cos
�������
8�
p

��
; (6)

where vc=� � v=Kc;�, Kc � 1=
���������������������
1� V�3�V

2�v

q
, and K� �

1=
����������������
1� �V

2�v

q
. This Hamiltonian describes two decoupled

sine-Gordon models for charge and spin sectors. Notice
that within this approximation, metallic ribbons of width
W � a reduce to quantum spin chains [18]. Analysis of
Eq. (6) shows that away from half filling (kFa � �=2),
spin and charge sectors are gapless. At half filling, K� > 1
and the spin field �� remains gapless, but Kc < 1 and the
charge field becomes gapped. The gap � is estimated in the
self-consistent harmonic approximation [18]:

 � �
vc
a

�
�V

2�vc

�
1=2�1�Kc�

: (7)

Figure 1 shows the dependence of the band gap and the Kc,
K� parameters on the ribbon width for a ribbon length L �
106

���
3
p
a ’ 400 	m (the dependence on the ribbon length

enters in the definitions of V and �V as shown above). The
band gap takes sizable values for narrow ribbons (� ’
130 meV for a W ’ 5 nm ribbon), although it decreases
dramatically with ribbon width as � 
 1=W
, with 
! 1
in the infinite length limit. The logarithmic dependence of

 on L results from the approximation of keeping only
long-range scattering terms and can be dealt with the
formalism presented in a systematic way. These results
are in qualitative agreement with numerical calculations
[12] and experimental measurements [4,5]. Recent
density-functional theory (DFT) calculations [12] on arm-
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chair ribbons have found a width-dependent gap that van-
ishes as 1=W in the limit of wide ribbons. The various
widths considered in that case included insulating and
metallic ribbons; thus, comparison with our results applies
only for metallic ribbons [see Ref. [12], Fig. 2(b), N �
3p� 2]. Interestingly, although DFT calculations include
effects of electron-electron interactions, the opening of a
gap in Ref. [12] was associated with relaxed atomic posi-
tions at the edge with carbon atoms passivated by H atoms.
Measurements on lithographically patterned graphene rib-
bons with different widths have also revealed nonmetallic
behavior with a width-dependent gap, explained as a con-
sequence of quantum confinement. Comparisons of these
results with theoretical predictions, however, remain at a
qualitative level due to the undetermined nature of ribbon’s
edges in the samples used.

Unlike numerical methods, the approach used pro-
vides expressions for various correlation functions
hT�O��; y�Oy�0; 0�i, where O is an operator representing
relative intersublattice charge (OC � �A � �B) or spin
(OSi � SiA � S

i
B, i � x; y; z) densities. These have the fol-

lowing expressions:

 

hOCOCi � Nhsin�y0 �
�������
2�
p

�c� cos�
�������
2�
p

���i;

hOSzOSzi � Nhcos�y0 �
�������
2�
p

�c� sin�
�������
2�
p

���i;

hOS�OS�i � Nhcos�y0 �
�������
2�
p

�c�e
�i�

�����
2�
p

���i;

(8)

with y0 � 2kFy and N � 2
�a . At half filling, the charge

field is locked at �c � 0 and the dominant correlation
functions are hOSzOSzi � y�K� and hOSiOSii � y

�1=K�

(i � x; y). These results suggest enhanced magnetic corre-
lations in the direction parallel to the graphene plane for
narrow ribbons. Away from half filling, however, the domi-
nant correlations depend on the values of Kc and K� which
are length dependent in the formalism presented. For K�3 �
Kc � 1 the most relevant operators are OC, OSx;y with
correlation functions decaying algebraically as hOCOCi �

y�Kc�K� and hOSx;yOSx;yi � y
�Kc�1=K� , respectively. In the

regime Kc �
K�
3 the dominant correlation function is

OCC � ��A � �B���A � �B� that decays as hOCCOCCi �

y�4Kc . This regime might be achieved only for narrow
ribbons.

Effect of ISO interaction.—Another interesting charac-
teristic of graphene is that its lattice symmetry supports a
particular spin-dependent second-neighbor hopping inter-
action, known as the ISO interaction. This interaction is
responsible for the appearance of spin-filtered edge states
[6,19] which have received much attention because of their
role in spin quantum Hall physics and their relevance for
spintronic circuitry. As proposed in [6], the ISO interaction
is an extension of Haldane’s original model [20] for the
quantum Hall effect with total zero magnetic flux that
includes both spins. Its Hamiltonian representation is given
by

 HSO �
��z 0

0 ���z

� �
; (9)

where � � 2t0� sin�qxa� � 2 sin�qxa=2� cos�
���
3
p
kya=2��, t0

is the ISO coupling, and �z is the spin Pauli matrix. An
intuitive picture for this term is shown in Fig. 2: the orbital
motion of an electron hopping in sublattice A�B� couples to
the spin of an electron sitting in the enclosed site of
sublattice B�A�. Since the hopping is spin dependent, the
interaction preserves time reversal invariance. After ex-
panding the Hamiltonian around the (K;K0) points, a linear
dispersion mode along the y direction is found:

 �s
	 � N sin

4�x
3a

e	s�0�x�W0=2� e
ikyy������
2L
p

1
	i

� �
; (10)

where N �
��������������

2�0

sinh�0W0

q
is the normalization factor, �0 �

3
���
3
p
t0, and s � � labels the spin. This expression reduces

to the known result in the limit of semi-infinite ribbons [21]
and it is in sharp contrast with predicted results on gra-
phene sheets [7]. As Eq. (10) indicates, these new modes
are localized on the edges and are spin-filtered states: the
probability currents along the edges are spin polarized [6].
The right-hand panel in Fig. 2 shows an example of such a
state. The velocity of this linear mode is equal to the Fermi

 0  2  3  4 1

FIG. 2 (color online). Left: ISO term with second-neighbor
hopping of an electron in sublattice A, coupled to the spin of an
electron on B. Equation (9) results from adding clockwise
motion and exchanging the role of both sublattices. Here 
0 �
kxa, 
� � �kxa=2� kya=2

���
3
p

. Right: Probability amplitude
for a right mover with spin-down (dashed line) and with spin-
up (solid line) at the edges of the ribbon as a function of ribbon
width.
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FIG. 1 (color online). Left: Charge band gap of an armchair
ribbon of length L ’ 400 	m as function of its width W. The
data show behavior � 
 1=W
 with 
 � 1:6 (see discussion in
text). Right: Kc and K� as function of the ribbon’s width.
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velocity of the free system since in the presence of the ISO
term kx acquires an imaginary part kx � 4�=�3a� � i�0

that preserves the linear dispersion relation. As was done
previously, it is possible to define an effective Hamiltonian
along the y direction and write it in terms of new boson
fields (�0c;�0�) and their duals.

By including only forward scattering terms, the effect of
Coulomb interactions on these states is obtained from

 H � H��0;�0� �
Z
dy
V1;2 � 2�V1;2

2�
@y�

0
c@y�

0
�; (11)

with the new velocities and Luttinger parameters
 

v0c � v=K0cK
0
c � 1=

������������������������������������������������������������������
1� �V1;1 � 2�V1;1 � �V�=2�v

q
;

v0� � v

�������������������������������������������������������������������
1�

V2;2 � 2�V2;2

2�v

��
1�

�V
2�v

�s
;

K0� �

������������������������������������������������������������������������
1�

V2;2 � 2�V2;2

2�v

���
1�

�V
2�v

�s
: (12)

Here we have defined Vj;k � a
��
3
p

2

P
mV

j;k
p;p�ym� and �Vj;k �

a
��
3
p

2

P
m�V

j;k
p;�p�ym� � V

j;k
p;p�ym��, where

 Vjkpp0 �y� y
0� � a2

X
n;n0
U��xnn0 ;�ypp0 � cosh�
jn� cosh�
kn0 �

� ��i�j�k
�������� 2�0

sinh�0W0
sin

4�xn
3a

sin
4�xn0

3a
;

(13)

with 
ln � 2�0xn � �0W
0 � i l�2 . As Eq. (11) shows,

Coulomb interactions renormalize the bare couplings and
introduce a new term @y�0c@y�0� that destroys spin-charge
separation. This term respects time reversal invariance and
is present in quantum wires with Rashba spin-orbit inter-
actions [22,23]. A rotation by an angle � diagonalizes the
quadratic terms of the Hamiltonian:

 tan2� �
�

v2
c � v2

�
; � � v

�
1�

�V
2�v

�
V1;2 � 2�V1;2

�
:

(14)

This rotation modifies the last term in Eq. (11) producing
corresponding changes in correlation functions. As it has
been proposed [7,24], the strength of the ISO interaction is
small compared to the bandwidth (t ’ 3 eV, t0 ’
0:001 meV), implying that the rotation angle �� 1. As
a consequence, the strong coupling physics of Eq. (11) and
the conclusions of the previous section remain unchanged
in the presence of ISO.

To summarize, we studied the low-energy physics of
armchair nanoribbons in the presence of intrinsic spin-orbit
and electron-electron interactions within a Dirac model.
We focused on states with linear dispersion near the neu-
trality (Dirac) points, and showed that they persist in the
presence of ISO interactions, as spin-filtered states local-

ized on the ribbon’s edges. These results have direct test-
able experimental consequences and are in contrast with
predictions of insulating behavior caused by this particular
interaction in graphene planes. For half-filled systems, we
showed that small-momentum transfer processes, due to
the long-range part of Coulomb interactions, open a charge
gap in the spectrum, while keeping the spin sector gapless.
The gap � is strongly dependent on the ribbon’s width and
vanishes in the limit of infinite ribbons as 1=W in qualita-
tive agreement with DFT calculations. Unlike numerical
methods [12], the formalism used provides clarification on
the origin of the gap and gives an explicit expression for its
dependence on the ribbon width as well as expressions for
various correlation functions. Further analysis of the re-
sults suggests an enhanced magnetic correlation for narrow
ribbons in qualitative agreement with interpretations pro-
posed for recent experimental measurements [11]. For
graphene ribbons away from half filling, charge and spin
sectors remain gapless even in the presence of interactions.
These results also hold for weak ISO interactions.
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