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We solve the quantum Hall problem exactly in a limit and show that the ground states can be organized
in a fractal pattern consistent with the Haldane-Halperin hierarchy, and with the global phase diagram. We
present wave functions for a large family of states, including those of Laughlin and Jain and also for states
recently observed by Pan et al., and show that they coincide with the exact ones in the solvable limit. We
submit that they establish an adiabatic continuation of our exact results to the experimentally accessible
regime, thus providing a unified approach to the hierarchy states.
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A key concept in quantum Hall (QH) physics is that of
an incompressible electron liquid. In the integer effect, the
formation of this liquid can be understood in terms of
independent electrons moving in a magnetic field in the
presence of a small but crucial amount of disorder [1]. In
the experimentally very similar fractional effect, the elec-
tron liquid is formed through the electron-electron inter-
action. The fractional liquids, the simplest of which are
well understood in terms of Laughlin’s wave functions [2],
are highly correlated quantum systems with remarkable
properties.

There are two alternative microscopic approaches to the
fractional liquids [3]—the hierarchy and composite fermi-
ons. In the former, successive condensation of the fraction-
ally charged quasiparticles leads to a hierarchy of ever
more complex QH states [4,5]. In the latter, the electrons
bind magnetic flux quanta to form new particles, composite
fermions, that see a reduced magnetic field, and the frac-
tional effect is an integer effect of these new particles [6,7].
However, neither composite fermions nor the hierarchy has
a solid theoretical foundation, and they may well be com-
plementary views of the same phenomena rather than
mutually excluding descriptions [8,9]. The hierarchy con-
struction is closely related to the global phase diagram, see
Fig. 1, which provides an overall picture of the QH states.
This phase diagram, which can be derived using a Chern-
Simons-Ginzburg-Landau approach [10], and exhibits an
intriguing modular symmetry [11], is supported by experi-
ments, but deviations have also been reported [12], and its
precise status remains an important open problem.

A great advantage of the composite fermion scheme is
that it provides very good and explicit wave functions for
the Jain states with � � n=�2kn� 1�, n, k � 1; 2; . . . ,
which can be interpreted as integer QH states of composite
fermions. Until recently, all observed states were of this
type; in 2003, however, experiments on ultra clean samples
revealed states at other fractions, such as 4=11 and 6=17
[13]. These new states point towards a fractal, self-similar,
structure of states in the lowest Landau level [14]. At
present, there are no agreed upon wave functions for these

states and the proper interpretation of them is under debate.
In this Letter, we give theoretical support for the global
phase diagram and present an explicit realization of the
hierarchy in a well-defined and solvable limit. We also
report explicit and testable wave functions for the states
that are obtained by successive condensation of quasielec-
trons—these wave functions agree with our exact solution
in the solvable limit, and naturally encompass both the
Laughlin and Jain wave functions and states such as 4=11,
reported in Ref. [13]. For other attempts to construct
hierarchy wave functions, some of them with explicit
reference to composite fermions, see, e.g., Refs. [9,15].

There is a simple and striking consequence of the ex-
periment in Ref. [13]: QH states are observed at all filling
factors � � p=q for q � q0 � 17 in the experimental
range of � (here q is odd and p, q are relatively prime),
see Fig. 2. A QH experiment is performed on a sample with
a certain amount of disorder—the lower the disorder is, the
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FIG. 1 (color online). Global phase diagram. The global phase
diagram in the filling factor-disorder plane for 1=4 � � � 1=2
(other regions are similar). Crosses mark fractions where wave
functions are constructed using conformal field theory.
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more fractions are observed. This defines a notion of
stability for a state: a more stable state is seen at higher
disorder than a less stable state. Our interpretation of
Ref. [13] is that (1) there is a QH state at any � � p=q �
1, q odd, and (2) the stability of the state decreases mono-
tonically with increasing q in agreement with the hierarchy
prediction [5].

The statement that there is a QH state for each � �
p=q � 1 needs to be qualified. We introduce a parameter L
such that the experimental regime is obtained as L! 1.
When L! 0 the problem is exactly solvable and the
ground state and its quasiparticle excitations have all the
qualitative properties of a QH state. If there is no phase
transition as L increases, then the QH state is observed at
this filling factor. However, phase transitions may occur
leading to other states such as Wigner crystals where the
repulsion freezes the electrons in a regular lattice, striped
states where the electron density varies periodically or a
Fermi gas (for even denominators q).

To give a detailed argument for the propositions in the
introduction, we proceed in three steps. First we solve the
interacting spin-polarized many-electron system exactly
for each filling factor � � p=q � 1 in a certain mathe-
matically well-defined limit. We obtain the ground state as
well as the fractionally charged quasiparticle excitations.
Furthermore, in this limit the hierarchy construction of the

QH states is manifest, and the stability of the states de-
creases monotonically with q. Second, for each fraction
where the state is obtained by (successive) condensation of
quasi electrons (as opposed to quasi holes), see Fig. 1, we
present explicit wave functions for the ground state and
wave functions for the quasiparticle excitations can also be
obtained. These wave functions—which are in the lowest
Landau level—are obtained by a unique and natural con-
struction that exploits the intriguing relation between the
QH effect and conformal field theory (CFT). They are in
1:1 correspondence with the exact solutions, and reduce to
these in the solvable limit. Furthermore, the fractional
charge and fractional statistics of the quasiparticles are
reflected in the algebraic properties of the CFT operators
by which they are created. Third, we argue that this con-
struction establishes the adiabatic continuation of the re-
sults in the solvable limit to the experimentally accessible
regime (at fractions where a QH state is observed).

The solvable limit is obtained by considering the two-
dimensional electron gas on a cylinder with circumference
L, and choosing the one-electron states centered along
rings around the cylinder—these states are Gaussians
with width of order one magnetic length ‘ �

��������������
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p
along the cylinder. This maps the QH problem onto a
one-dimensional lattice problem with lattice constant
2�‘2=L. A basis of many-electron states is given by
jn1n2; . . .i, where nk � 0, 1 depending on whether site k
is empty or occupied. When L=‘! 0 the overlap between
different one-electron states vanishes and the energy ei-
genstates are simply the states where the electrons occupy
fixed positions, jn1n2; . . .i, and the ground state is the one
that minimizes the electrostatic repulsion [16]. At � �
1=3, this is obviously the state where every third site is
occupied [17]. For general filling factor, � � p=q, the
ground state is a gapped crystal—or Tao-Thouless (TT)
state—with p electrons in a unit cell of length q. For
example, at � � 1=3; 2=5; 3=7; . . . the unit cells are 100,
10010 � 10210, 1001010 � 102�10�2 . . . .

The lowest energy charged excitations at � � p=q are
quasielectrons and quasiholes with charge �e=q, where
	e is the electron charge; in the thin limit these are domain
walls in the TT-state and the charge is determined by the
Su-Schrieffer counting argument [16,18]. For example, the
excitations at � � 1=3 are obtained by inserting or remov-
ing 10. When the filling factor is gradually increased away
from 1=3 a gas of such quasielectrons of increasing density
is formed. These repel each other and condense to form
new ground states. Eventually, one excitation per unit cell
has been added and the new ground state has unit cell
10010—the filling factor is then 2=5. However, before
this happens lower density condensates, with one quasie-
lectron per 2k	 1 unit cells 100 will form, giving new
ground states with unit cells �100�2k	110 at filling factors
� � 2k=�6k	 1�, k � 1; 2; . . . . Similarly, decreasing the
filling factor away from 1=3 gives the ground states with
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FIG. 2 (color online). Observed states and fractal structure. For
each rational filling factor, � � p=q � 1, q odd, there is a
unique hierarchy state and its stability increases monotonically
with 1=q. The fractal structure of states is manifest. States in the
region 2=7 � � � 2=3 reported in Ref. [13] are marked by
crosses; pluses mark fractions were we infer a possible weak
signal from the data in Ref. [13]. The horizontal line marks the
extent in � of the experiment and is a line of constant gap and the
approximate boundary for the observed states. The inset shows
the structure of hierarchy states: At each � � p=q, q odd, there
is a state with gap 
1=q and quasiparticles with charge �e=q.
When these condense two sequences of states approaching p=q
with decreasing gap are obtained.
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unit cells �100�2k	11000 at � � 2k=�6k� 1�. This pattern
is general: The TT-state at � � p=q is the parent state for
two sequences of daughter states that approach � � p=q
from above and below and are obtained by condensation of
decreasing densities of quasielectrons and quasiholes, re-
spectively, see the inset in Fig. 2. For details and proofs we
refer to Refs. [16,19].

To summarize, at each � � p=q � 1, q odd, there is a
TT-state, which we argue below develops into a QH state as
L! 1, and these states are formed from other TT-states
by condensation of quasiparticles. This may also be inter-
preted as the quasiparticles filling an effective Landau level
as one goes, e.g., from � � 1=3 to � � 2=5.

The QH effect is destroyed by disorder—at a certain
amount of disorder only states with a stability above some
threshold occur. A measure of the stability is the energy it
costs to create a quasielectron-quasihole pair. In the thin
limit, this decreases monotonically when q increases
[19]—in good agreement with the hierarchy prediction
[5]. Figure 2 shows 1=q for all hierarchy states in the
lowest Landau level. There is a unique state at each rational
filling factor, so this is simply a plot of 1=q for all rational
numbers � � p=q in the interval [0,1] (where q is odd and
p, q are relatively prime). This is a self-similar, fractal,
structure—enlarging any interval of � gives an identical
figure. Since the solvable limit predicts that the gap in-
creases with 1=q, states above some roughly horizontal
line should be observed in a given sample. In the figure, the
states observed in the interval 2=7 � � � 2=3 for an ex-
treme high mobility sample [13] are indicated. The agree-
ment with the prediction is surprisingly good. The
deviations seen in Fig. 2 may be due to corrections to exact
particle-hole symmetry and to the difficulty to observe a
weak state that is close to a much more stable state—this
for instance explains why the Jain state at � � 10=21 is
observed, but not (yet) the state at � � 7=19. The latter,
which we predict to be on the verge of observation, is
interesting in that it would be the first daughter of a non-
Jain state. We conclude that Fig. 2 in general determines
what states should be observed at given disorder.

We now discuss the phase diagram in the filling factor-
disorder plane in the thin limit, making two assumptions:
(1) The states with a gap above a certain cutoff are formed
at given disorder and this cutoff decreases monotonically
with decreasing amount of disorder, and (2) phase transi-
tions between QH states are caused exclusively by con-
densation of the quasiparticles discussed above. (1) means
that Fig. 2 can be thought of as a diagram in the filling
factor-disorder plane and (2) implies that the phase bound-
ary for � � p=q must contain precisely those states that
can be obtained by (successive) condensation of such
quasiparticles. For example, the 1=3-dome must extend
over � � p=�2p� 1� ! 1=2 and over � � p=�4p	 1� !
1=4 but include no larger or smaller �. This gives the phase
diagram in Fig. 1, where only the topology of the phases

and their relative heights are significant. The topology is
identical to the one in the lowest Landau level part of the
global phase diagram of Refs. [10,11].

Given the assumptions, this establishes the global phase
diagram as L! 0. As L! 1, the TT-state at any � �
p=q, q odd, develops into a QH state, as will be argued
below. If there is no phase transition when L grows, then
this state is the ground state in the experimental regime and
the QH effect is observed at this filling fraction. However,
phase transitions may occur and other states may be ob-
served. We believe that this explains the observed devia-
tions from the global phase diagram, such as the insulating
phases near Laughlin fractions [12]. In fact, the even
denominator fractions are an example of this phase tran-
sition scenario. Even though we have excluded them from
the discussion above, the gapped TT-states are the ground
states also for these fractions as L! 0. We believe that the
well-understood � � 1=2 case is representative: As L in-
creases, the gapped TT-state, which has unit cell 10, gives
way to a state with gapless neutral excitations for
L
 5‘—a Luttinger liquid; this state then develops
smoothly into the observed gapless two-dimensional bulk
state [16,20]. This shows that the small L limit may de-
scribe also nonhierarchy states.

It is crucial that our results can be extended from the thin
cylinder, were they are established, to the experimentally
relevant two-dimensional bulk case. First we note that the
qualitative features of the TT-states and the QH hierarchy
states are the same: they have a gap, the same quantum
numbers and, in particular, they have quasiparticles with
the same fractional charge. Also note, that while any QH
state on a torus shows a periodic variation in the density
[21], the approach to homogeneity is very rapid but does
not correspond to a phase transition. The two schemes-the
thin limit and the CFT approach-give an identical hierarchy
of states, this clearly suggests an adiabatic connection.

For a short-range interaction the Laughlin states are the
ground states for all L [22]; this establishes that the TT
states at these fractions develop continuously into the bulk
QH states as L! 1without a phase transition. Noting that
the problem on a cylinder with circumference L can equiv-
alently be thought of as the infinite two-dimensional case
with an L-dependent Hamiltonian, we conclude that the TT
state and the bulk QH state are adiabatically connected for
the Laughlin fractions (and a short-range interaction). We
believe this holds generically for fractions where a QH
hierarchy state is observed, i.e., this state is adiabatically
connected to the corresponding TT state. This claim is
supported by numerical simulations on small systems,
where the gap to the first excited state has been shown to
remain finite for all odd (but for no even) q � 11 [16].
Moreover, Jain’s wave functions for � � n=�2kn� 1� re-
duce to the appropriate TT states as L! 0 [16], thus
giving a strong argument for the adiabatic continuity also
for these fractions. However, the status of the fractions that

PRL 99, 256803 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
21 DECEMBER 2007

256803-3



cannot be interpreted as an integer effect of composite
fermions has until now been less clear.

Around 1990 it was noted that Laughlin’s wave func-
tions take the form of correlation functions in certain
conformal field theories [23,24], and it was also conjec-
tured that this is true for general QH states [23,25].
Recently it was shown that the composite fermion wave
functions in the Jain sequence � � n=�2kn� 1�, k, n �
1; 2; . . . can be constructed from correlators in a CFTwith n
bosonic fields [26]. A natural extension of this construction
gives, for n bosonic fields, a set of wave functions labeled
by n positive integers ki, i � 1; 2; . . . n. If ki � 1 for i �
2; . . . n, then �n � n=�2k1n� 1� and the wave functions
are Jain’s composite fermion wave functions. For a general
set fkig, the wave function approaches the TT-ground state
in the thin cylinder limit. These fractions, in the interval [ 1

4 ,
1
2 ] are indicated in Fig. 1. The ki’s determine the densities
of the n condensates of quasielectrons that build up the
state—the composite fermion state is the one where all but
the first of these condensates have maximal density. Using
the methods of Ref. [26] one can construct wave functions
also for the pertinent quasihole and quasielectron excita-
tions, and show that the expected charge and statistics
properties of these particles are reflected in the algebraic
properties [U�1� charge and commutation relations] of the
corresponding anyonic operators. Details will be published
later, and here we only present the n � 2 wave functions
for N � 2k2M2 particles at positions zi � xi � iyi:
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where fimg is a subset of M2 indices, and f�img are the
remaining M1 � �2k2 	 1�M2 indices. For k2 � 1, � are
Jain’s wave functions at � � 2=�4k1 � 1�, while k1 � 1,
k2 � 2 gives our proposal for the observed state at � �
4=11. The thin limits [16] of the n � 2 states are the TT
states �102k1

�2k2	1102k1	1.
We compared our candidate wave function at � � 4=11

with exact diagonalization results in the disc geometry. For
eight particles, the overlap with the exact ground state is
0.72 and the energy E4=11 � 5:317 is in good agreement
with the exact one, Eexact � 5:297 (in units of e2=�‘).
Preliminary results for a torus, where there are no edge
effects, are encouraging.

In summary, we presented theoretical support for the
global phase diagram and obtained an explicit realization

of the hierarchy of fractional QH states in a solvable limit.
For a large class of states, including those of Laughlin and
Jain, we presented explicit many body wave functions that
represent an adiabatic continuation from the solvable limit
to the experimentally relevant region.
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