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Diffusion towards a fractal adsorber is a well-researched problem with many applications. While the
steady-state flux towards such adsorbers is known to be characterized by the fractal dimension (DF) of the
surface, the more general problem of time-dependent adsorption kinetics of fractal surfaces remains
poorly understood. In this Letter, we show that the time-dependent flux to fractal adsorbers (1<DF < 2)
exhibit complex ‘‘dimensionally frustrated’’ self-similar time response and is characterized by a simple
scaling law �0t

1=DF � c (�0 is the concentration of particles, t is the time, and c is a constant). Indeed our
analysis establishes the time response of technologically relevant nanonet (or nanocomposite) biochemi-
cal sensors as a test bed of time-dependent adsorption on fractal surface, providing a novel experimental
measure of DF and an obvious route to improved sensor design.
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Introduction.—Irreversible capture of molecules by ad-
sorbing surfaces is an important problem with many appli-
cations in science and technology. The examples range
from growth of fractal structures due to random aggrega-
tion of particles to breakdown transient in thick dielectrics
to the recent research in detection of biomolecules by
nanoscale sensors [1–7]. Often the rate limiting step in
these applications is the diffusion of particles to the ad-
sorbing surface. The time evolution of these phenomena is
of significant interest both for better understanding of the
physical processes involved (e.g., crystal growth of fractal
surface, geometry of corrosion, resistance of solar cells
with fractal electrodes, etc.) as well as for design and
optimization of corresponding devices and systems.

Random motion of particles in the absence of any ex-
ternal force is characterized by the time-dependent diffu-
sion equation,

 

@�
@t
� Dr2�; (1)

where ��r; t� is the probability density or concentration of
particles, and D is the diffusion coefficient. Adsorbing
surface s�DF�t��—characterized by its fractal dimension
DF—defines the boundary condition for Eq. (1) such that
��r; t� � 0 on s�DF�t��. Since both the field density ��r; t�
as well as the fractal surface s�t� evolve with time, solution
of Eq. (1) represents a formidable task in modeling.

Even approximate steady-state solution of Eq. (1) (i.e.,
r2� � 0), however, provides many surprises and has long
been explored within the context of diffusion-limited ag-
gregation (DLA). DLA describes the steady-state growth
of adsorbing surface in response to the random aggregation
of particles [1]. The assumption of quasi-steady-state field
is justified on ad-hoc basis, i.e., the field � can respond
faster than the evolution of the surface and hence the
evolution of surface s�t�, rather than the kinetics of diffu-
sion (i.e., d�=dt), dictates the incoming particle flux.
Historically, two types of DLA problems have been of

broad interest: type I problems involve calculation of the
geometrical characteristics of steady-state s�t� [1], while
type II problems involve the steady-state spatial character-
istics of ��r� with time-invariant adsorbing surface char-
acterized by s�DF� [2]. We now know that for type I
problems with isotropic flux, s�t! 1� is characterized
by DF � 1:71 in 2D surfaces and �2:5 in 3D surfaces,
etc., and that for type II problems, the exponent of spatial
scaling laws are related to the time-independent fractal
dimension of the adsorber. In general, since the primary
research focus for DLA involves evolution of adsorbing
fractal surface due to particle aggregation, the transient
kinetics of the aggregation process is not well explained:
indeed, the use of Laplace equation ensures that regardless
of the geometry, the number of captured particles N�t�
would scale linearly with time for all DLA problems [3].

In this Letter, we focus on a more general DLA problem
that requires transient solution of (1). Specifically we
obtain the kinetic exponents of adsorption that relates the
net aggregated particles N�t� on fractal surfaces as a func-
tion of time. We explore the time evolution of the diffusion
profiles and their effect on particle aggregation until steady
state is reached. In sum, while DLA requires solution of
time-independent Laplace equation with (possibly) time-
dependent DF�t�, we are interested in a separate class of
problems (type III) that requires time-dependent solution
of Eq. (1) with time-invariant DF.

Many practical and theoretical problems belong to the
type III DLA problems: a specific problem of significant
current interest is the irreversible adsorption of biomole-
cules on nanonet (also called nanocomposite) sensors
[4,5]. Towards the eventual goal of exploring kinetics of
diffusion towards nanocomposite sensors (1<DF < 2),
we have recently demonstrated that the net aggregation
of biomolecules on integer-dimensional sensors (e.g.,
planar, cylindrical, and spherical surfaces) is character-
ized by simple scaling laws [8]. In this Letter, we general-
ize the transient solution to show that fractal adsorbers
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(1<DF < 2) exhibit ‘‘dimensionally frustrated’’ time re-
sponse which is dictated by the subtle interaction between
one- and two-dimensional diffusion profiles at various time
scales. Despite this complex time response, remarkably,
the particle aggregation on a fractal adsorber follows the
same simple scaling law as their integer-DF counterparts,
except that the time exponent is now determined by the
dimensionality of the fractal surface, i.e.,

 N�t� � k�0t
� � k�0t

�1=DF�; (2)

where N�t� is the total number of adsorbed particles on
sensor surface at time t, k is a constant, and �0 is the
density of analyte particles far from the interface. In
the following sections, we first intuitively interpret and
then numerically validate the aforementioned scaling
relationship.

Solution to Eq. (1) with fractal surface.—Consider an
isolated adsorbing surface introduced to a static field at
time t � 0. The particle flux at the sensor surface is given
by

 I � D
Z
AD
rn�ds; (3)

where AD be the dimension-dependent area of the sensor
surface. Based on [9], the solution of (1) in any dimension

at steady state is given by

 I � JAD � CD;SS��0 � ��s��; (4)

where J is the incident average flux density on the ad-
sorber, CD;SS the diffusion equivalent capacitance, �0

is the ‘‘equilibrium’’ particle concentration at a distance
W from the adsorber surface, and ��s� is the particle
concentration at the adsorber surface. CD;SS, in general,
is a simple analytical function of W [e.g., for planar
surfaces CD;SS � D=W, for cylindrical surface CD;SS �
2�D= log�W�, etc.]. The incident flux must balance the
particle flux, so that J � dN=dt. The time evolution of
particle aggregation, with ��s� set to zero in Eq. (4), is then
given by

 N�t� � �0t
CD;SS
AD

: (5)

For integer-DF surfaces, the transient response of particle
aggregation can now be derived based on a perturbation
approach reported in [8]: as time progresses, the particle
concentration near the adsorbing surface decreases as
they diffuse to the adsorber and are captured on the sur-
face. Assuming quasiequilibrium conditions, this phe-
nomenon can be accounted by defining a new diffu-
sion equivalent capacitance CD�t� by replacing W in
CD;SS by W�t� � �Dt�0:5 for various integer-dimensional
surfaces such that CD�t� � Kt�0:5 for planar surfaces and
CD�t� � Kt0 for cylindrical surfaces, etc. With this CD�t�,
Eq. (5) solves Eq. (1) (almost) exactly for integer-DF
surfaces.

For fractal adsorbing surfaces, the form of CD�t� is not
known; however, we posit that the diffusion equivalent
capacitance can be expressed by same general form as in
integer-DF surfaces,

 CD�t� � Kt
� (6)

except that the constant � is now not limited to 0 or �0:5,
but is a characteristic of the fractal dimension of the
adsorbing surface. Therefore, the transient response of
fractal sensor would be given by inserting (6) in (5) such
that

 N�t� � k�0t
� (7)

with time exponent � � 1	 �, by definition.
Interpretation of Eq. (7).—To explore the origin of (6) or

(7) for fractal adsorbers and for computational feasibility,
we propose a ‘‘Cantor transform’’, i.e., we construct a
quasi-2D Cantor surface [illustrated in Fig. 1(b)] which
has the same DF as the fractal adsorber shown in Fig. 1(a).
This (novel) Cantor transform retains many characteristic
features of scaling of the original surface while being a
more efficient tool, conceptually and computationally, for
reaction-diffusion systems due to its self-similar scale-
invariant structure [10]. We now study the time-dependent
adsorbtion of molecules on this Cantor surface and then
will later show the equivalence of such a transform through
numerical simulations.

FIG. 1 (color online). (a) Schematic of nanocomposite sensor.
(b) 2D equivalent Cantor surface with same DF as in (a).
(c) Contour plot illustrating temporal self-similarity of the diffu-
sion profiles. White rectangles indicate the side view of cantor
set sensor shown in (b). As time progresses, the diffusion fronts
move away from sensor surface alternating between 1D and 2D
behavior. (d) Schematic representation of time response as a
sequence of contributions from 1D and 2D responses, corre-
sponding to Fig. 1(c). Solid lines indicate simulation results
while the dotted lines are for illustration.
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Figure 1(c) shows that the diffusion contours during
initial times resemble the individual elements on the
Cantor surface and hence appear as a series of isolated
cylindrical (DF � 1) adsorbers characterized by time ex-
ponent �� 1 [Fig. 1(d)]. As time progresses, adjacent
diffusion fronts merge, and at this length scale, the surface
appears planar (DF � 2) with �� 0:5. This 2D diffusion
is again followed by 1D diffusion, thereby completing the
first cycle [see Fig. 1(c) and 1(d)]. Subsequently, the scale
invariance of the Cantor surface dictates that a local cluster
of Cantor elements appear as one composite cylinder with
DF � 1 diffusion until the next adjacent clusters merge
and diffusion reverts back to planar diffusion (DF � 2) in
cycle 2 and so on. This dimensional frustration of diffusion
profiles at various time scales reflects the spatial scale
invariance of the underlying fractal adsorber. Since the
clustering of elements of Cantor set is according to a power
law (specific value defined byDF), the time transition from
1D to 2D diffusion is also characteristic of DF and hence
the response is scale invariant in log�t� plot [shown sche-
matically in Fig. 1(d), see inset of Fig. 2 for numerical
verification]. The time exponent � in (7) therefore reflects
the fractal dimension of the Cantor surface.

To establish the explicit dependence of � to DF, we
construct a series of Cantor surfaces with various DF and
use finite element method to numerically solve Eq. (1) with
the boundary condition ��s�DF�� � 0 on the surface. The
inset of Fig. 2 shows the integrated flux N�t� for a wide
variety of Cantor surfaces with various DF. The time
exponents � � 1	 � as a function of DF are extracted
by fitting N�DF; t� versus t profiles and plotted in Fig. 2

(shown as circles). Numerically, for finite systems, ��
�1=DF�

� with �� 1 (renormalization group estimates may
eventually improve the bound).

Uniqueness of time exponents.—While the kinetics of
fractal absorption was established above with reference to
Cantor surface [Fig. 1(b)], we now provide strong numeri-
cal evidence that Eq. (2) is more general and that all quasi-
2D fractal surfaces [e.g., Fig. 1(a)] defined by the same
fractal dimension are characterized by same kinetic expo-
nent ��DF�. Since complete time-dependent solution is
computationally prohibitive, we prove the equivalence of
fractional diffusion with fractal surfaces defined by
Fig. 1(a) and 1(b) by indirectly comparing � from their
respective diffusion equivalent capacitance. Since � �
1	 �, equivalence of � dictates equivalence of �.
Figure 3 shows the variation of capacitance CD�t� with
time for Cantor set sensor and composite adsorbers of
different DF. Figure 3 also allows determination of �,
and the corresponding � is plotted in Fig. 2. For the
same DF, the exponents of the nanocomposite adsorbers
match those from Cantor surface within the margin of
error, thereby establishing the uniqueness of Eq. (2) for
general fractal surfaces. As a further test, different mani-
festations of composite adsorbers for a given DF gave
similar time exponents (results not shown).

Discussion.—In addition to relevance to any generic
type III DLA problems involving fractal surfaces, Eq. (2)
has particularly important implications for detection limit
of biomolecule by nanoscale sensors composed of mats of
carbon nanotube (CNT) and Si nanowire (NW). These
nanocomposite biosensors have recently been proposed
as an alternative to planar sensors for ultra sensitive de-
tection of biomolecules. The DF of these random-stick
networks (stick length, LS) is a unique function of the
stick density � (relative to their percolation threshold,
�perc � L�1:8

s [11] ) and is bracketed by 1<DF < 2.
Previously, Ref. [8] established that �0t� � const for

FIG. 2 (color online). Variation of time exponent with fractal
dimension of sensors. Circles represent the slope extracted by
solving the time-dependent diffusion equation numerically for
cantor set sensors [Eq. (1), inset shows the time response]. Down
triangles represent the time exponents of cantor set sensors while
up triangles represent nanocomposites sensors [Fig. 1(a)], based
on numerical estimation of the diffusion equivalent capacitance
[Eq. (6)].

FIG. 3 (color online). Diffusion equivalent capacitance as a
function of time [Eq. (6)] evaluated for cantor set sensors [(a),
see Fig. 1(b)] and random nanocomposite sensors [(b), see
Fig. 1(a)] for different fractal dimensions [17].
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integer-DF sensors, where � � 1 for cylindrical sensors
(DF � 1), while � � 0:5 for planar sensors (DF � 2).
Equation (2) implies that for fractal adsorbers, the corre-
sponding scaling law is given by � � �1	 �� �D�1

F , i.e.,

 �0t
�1=DF� � const: (8)

Equation (8) implies that for any finite measurement win-
dow ts, the detection limits (�0;min) of such fractal sensors
will always be higher than planar sensors (approached by
high-density network), but lower than single-CNT or
single-NW sensors (approached by reduced density sen-
sor). This observation is indeed consistent with the re-
ported detection limits of nanocomposite sensors [7] and
nanosensor arrays [12]. To our knowledge, this is the first
interpretation of the puzzle of composite sensors that the
collective sensitivity of N sticks is actually poorer than a
single stick sensor. Equation (8) provides a natural frame-
work to classify wide variety of nanobio- and nanochem-
ical sensors reported in the literature. In addition, it is well
known that electrical response of the percolative network
in Fig. 1(a) increases with network density [11], while the
detection limit decreases with density [Eq. (8)]—provid-
ing a previously unanticipated route to optimization of
high-performance nanocomposite biosesnors.

Our results also provide a simple experimental tech-
nique to determine the fractal dimension of adsorbers.
Currently, optical diffraction on isotropic fractals allows
experimental extraction of DF [13]. Since the time expo-
nent in biosensors uniquely related to DF, we speculate
that DF of any adsorber (1<DF < 2) can be easily de-
termined from the transient capture dynamics (reflected
in evolution of electrical signals) of adsorbers [14].
Specifically, DF can either be directly determined from
the transient behavior [inverse slope of log�N� versus log�t�
plot, Eq. (2)] at a particular analyte density or from the
scaling of time ts required to capture N0 (constant) number
of particles at different � [i.e., slope of log�ts� versus
log��� plot, for a given N0 as given Eq. (8)]. Finally, we
wish to make a passing observation that diffusion towards
fractal adsorbers may be classified among and can be an
additional example of the general class of problems (e.g.,
zero-point entropy of common ice [15], magnets on trian-
gular lattice [16], etc.) with characteristics dictated by
geometrical frustration of the underlying phenomenon.

To summarize, we showed that fractal adsorbers exhibit
self-similar time response and their behavior alternates
from a planar system to that of a cylindrical system.
Despite this complexity, the transient kinetics is encapsu-
lated by a simple scaling law [Eq. (2)] with time exponent
inversely proportional to the fractal dimension of the ad-
sorbing surface. The results specify a robust classification
scheme for nanobio- and nanochemical sensors and inter-
prets the puzzle why nanocomposite sensors are many
orders of magnitude more sensitive than FET based sen-
sors, yet despite years of efforts, continue to be less sensi-
tive than isolated nanowire/nanotube sensors.
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