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We present measurements of the spatial intensity distribution of localized modes in a two-dimensional
open microwave cavity randomly filled with cylindrical dielectric scatterers. We show that each of these
modes displays a range of localization lengths, and we successfully relate the largest value to the
measured leakage rate at the boundary. These results constitute unambiguous signatures of the existence
of strongly localized electromagnetic modes in two-dimensionnal open random media.
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In spite of two decades of intensive research, the experi-
mental observation of strong localization of classical
waves remains a tremendous challenge [1]. One of the
main difficulties lies in the fact that the signature of local-
ization is sought after through statistic measurements of
transmission. Indeed, the expected exponential decrease of
transmission could not be attributed unambiguously to
localization rather than absorption [2]. In contrast, tran-
sient analysis, as demonstrated by Weaver in ultrasound
measurements in a two-dimensional (2D) disordered me-
dium [3], allows us to discriminate between these two
phenomena. A similar approach has been proposed in
disordered microwave systems by Chabanov, Stoychev,
and Genack who demonstrated localization in the micro-
wave regime using variance of total transmission as a
genuine probe to localization even in the presence of strong
absorption [4]. More recently, Störzer et al. have observed
a deviation from diffusion in the time of flight distribution
which cannot be explained by absorption, but argues for a
transition to strong localization of photons in three dimen-
sions [5]. Such signatures of localization in transmission
reflects the nature of the underlying quasimodes, which are
spatially localized inside the system. The increasing con-
tribution of such long-lived modes, as time progresses, is
responsible for the observed deviations from the regime of
purely diffusive transport [6]. Besides the fact that their
localized nature is not affected by absorption, exhibiting
the localized modes inside the random system would be a
direct demonstration of localization and the key to the
understanding of the mechanism underlying the transition
from a diffusive to a localized regime.

Observations of localized modes have been mostly re-
ported in 1D random systems [7] where localization is
readily achieved. In the marginal dimension of 2, localiza-
tion of bending waves in randomly loaded steel plates [8]
and spatial concentration of microwave field in microwave
cavities [9] have been reported where the influence of the
reflecting boundaries precludes the unambiguous attribu-
tion of the localization effect to the sole presence of
scatterers. The aim of this Letter is to provide an unequivo-
cal observation of localized modes in an open 2D random
system. Beyond the mere observation of such modes, we

put them under a test of robustness and successfully com-
pare them with numerical simulations and theoretical pre-
dictions concerning the relationship between their spectral
widths and the localization lengths.

All our results are obtained from transmission signals
measured in a 2D microwave cavity operated at frequen-
cies ranging from 500 MHz to 10 GHz. The original
rectangular (76� 47 cm) bare cavity is composed of two
copper plates sandwiching a copper rectangular frame of
thickness 5 mm. The quality of copper is oxygen-free high
conductivity to reduce Ohmic losses. Because of its height
of 5 mm (smaller than half the smallest wavelength used),
this cavity admits only transverse magnetic two-
dimensional modes of order 0. Through one of the copper
plates, a few antennas are introduced, their optimal weak
coupling being obtained by fixing their penetration length
inside the cavity at 2 mm. The antennas are monopolar
with SMA connectors and their positions are displayed in
Fig. 1. In transmission measurements, only two antennas
are used at a time, the other ones being terminated by 50 �
loads so that all antennas behave the same way regarding
the losses they imply. These antennas are linked to a
Hewlett-Packard 8720 D vector analyzer through flexible

c+

+

+d

a

b+

FIG. 1. Schematic view of the cavity: 196 scatterers located in
a central square region. Two different layers of microwave
absorbers ensure a weak inward reflection of the field. The
antennas (a, b, c, and d) are shown through small crosses.
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cables. The details about transmission measurements are
described in Ref. [10].

In order to mimic a truly open system, frames of micro-
wave absorbing foams are inserted in the cavity, surround-
ing an empty rectangular-shaped space. Two different
layers of absorbers (ECCOSORB® LS-14 and LS-16)
are used with different electromagnetic impedances (see
Fig. 1), the inner layer having a relative impedance of 0.89
and the outer 0.87 at 10 GHz. Their thickness is the overall
thickness of the cavity, and their respective widths are
determined to provide 20 dB of attenuation in the intensity
reflected back to the empty space at frequencies above
500 MHz. As shown in Fig. 1, a disordered medium is
introduced in the empty space. It consists of 196 cylindri-
cal dielectric scatterers with a measured dielectric constant
� � 37, a radius of 3 mm, and a height of 5 mm, the
scattering region being a 25 cm� 25 cm square. The scat-
terers have been chosen for their particular low loss (qual-
ity factor Q � 7000 at 7 GHz) and their high index of
refraction. In the frequency range of interest, the possible
excitation of transverse electric waves inside the dielectric
scatterers can be assumed to be negligible. It is worth
noting that our 2D system is formally equivalent to the
problem of a quantum particle with positive energy above a
disordered potential consisting of negative circular wells
embedded in a zero potential. To be more explicit, at a
given frequency ! � ck, the 2D Helmholtz equation for
the component � of the electric field perpendicular to the
plane of the cavity can be written in the form of the
stationary Schrödinger equation

 f��� �1� n2�~r��k2g��~r� � k2��~r�: (1)

Therefore, the well associated to a dielectric scatterer
should not be viewed as a confining well but rather as a
resonant scattering well.

The positions of the scatterers are determined at random
with a filling fraction of 8.9% and a minimal distance dmin

between the centers of neighboring scatterers. At the above
given filling fraction, the values of dmin range from 8 to
19 mm. The smallest value is dictated by practical con-
straint; the largest corresponds to the lattice parameter of a
square array. We fixed dmin � 11 mm. Figure 1 displays a
particular realization of disorder using the above parame-
ters. In Fig. 2, a typical transmission spectrum (between
antennas a and b) is shown. One can clearly identify a
frequency range which is reminiscent of the band gap
generally found in the case of a periodic structure. Here
the central frequency of the observed gap is essentially
related to the neighboring Mie resonances [8,11] (the Mie
cross section of a single scatterer is shown superimposed to
the measured spectrum in Fig. 2). The width of the gap is
controlled by dmin. Using a diffusion based theory [12–14],
we evaluated the localization length �theory in two dimen-
sions for our system of scatterers within the independent
scattering approximation. It reads as follows:

 �theory � ‘ exp��Re�keff�‘=2�; (2)

where keff is the effective complex wave number and ‘ �
�2Im�keff��

�1 is the mean free path, which is inversely
proportional to the Mie cross section. The minimal values
of this localization length are roughly located at the max-
ima of the Mie cross section and are of the order of 10 mm,
a value comparable to the mean free path and also to the
mean distance between scatterers for the filling fraction
mentioned above.

By using an appropriate fitting procedure [10] we ex-
tracted the central frequency and the spectral width of a
given resonance. Because of the finite size of the scattering
region, only a few widths take values close to those ex-
pected when taking only the Ohmic losses into account
(close to 1 MHz at 6 GHz), whereas the vast majority are
significantly larger. To begin, we focused our attention on
three resonances: one in the gap at 5.45 GHz, one on the
edge of the gap at 5.66 GHz, and one at 7.80 GHz, and with
respective widths of 1.1 MHz, 3.0 MHz, and 15.0 MHz.
When using different pairs of antennas we obtained spectra
very similar to the one presented in Fig. 2, the most af-
fected resonances being the sharpest, like the three se-
lected, as they can even disappear for a given pair. This be-
havior pleads in favor of the observation of strongly local-
ized modes. Indeed, as is shown in the following text, when
both antennas are located on vanishing tails of a given
localized mode, the transmission signal itself vanishes.

We obtained the spatial distribution of these resonances
by using a well-known scanning perturbation technique
(see Ref. [15], and references therein). This technique is
based on the fact that, for a given resonance, a frequency
shift is caused by the presence of a small movable stainless
steel bead placed inside the cavity. This perturbation tech-
nique crucially relies on the fact that the analyzed reso-
nance is sufficiently well isolated from its neighbors. The
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FIG. 2. Full curve: transmitted intensity between antennas a
and b for the disordered realization shown in Fig. 1. Dashed
curve: Mie cross section of a single dielectric scatterer. The
dotted lines indicate the resonances whose associated wave
functions are depicted in Fig. 3.

PRL 99, 253902 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
21 DECEMBER 2007

253902-2



shift is a measure of the intensity of the local field at the
bead location and is essentially proportional to the square
of the electric field [15]. Indeed, through measurements on
computable modes of an empty rectangular cavity we
checked that the transverse magnetic field contribution is
at most of the order of 1% of the maximum contribution of
the electric field. The bead can be moved on a very finely
defined grid (5-mm step) from the outside of the cavity by
means of a strong magnet which is fixed on an X-Y precise
translation stage.

In Figs. 3(a)–3(c), two-dimensional scans of the ampli-
tude (square root of the intensity) of the three long-lived
modes mentioned above are depicted. They display a clear
spatial concentration. Whereas mode (a) seems to be
trapped in an small region surrounded by scatterers, modes
(b) and (c) are more extended. Following a method indi-
cated below, we evaluated the localization lengths for these

modes: between 15 and 25 mm for mode (a), 25–36 mm
for mode (b), and 38–50 mm for mode (c) (the ranges
depending on the anisotropy of the spatial pattern). Note
that modes (a) and (b) have vanishing amplitudes at the
locations of antennas b and c (see Fig. 1) and that their
corresponding peaks vanish in the transmission signal
when the pair of antennas b and c is used.

For the sake of completeness, we also performed nu-
merical simulations of the Maxwell equations in our sys-
tem through a FDTD method [16]. To mimic perfectly
open boundary conditions perfectly matched layer (PML)
boundaries were implemented [17]. These PML conditions
are used in the same spirit as the absorbing microwave
layers of the actual experiment. In the numerical simula-
tions, losses are due only to the leakage through the bound-
ary since no Ohmic dissipation is included. Hence, spectral
responses display sharper peaks than in the experiment, but
all the identified resonances of the experiment are found at
the corresponding frequencies. Figure 3 shows a compari-
son between experimental and simulated modes. The
agreement is good. Note the presence of a nonvanishing
field inside the scatterers, such information being beyond
the reach of our experimental measuring technique.

As the numerical modes have precisely calculated ex-
ponentially vanishing tails far from their centers, we ex-
tracted values of their localization lengths �loc by
numerically evaluating the field amplitude spatial autocor-
relation. (Because of a small contribution from the squared
magnetic field to the frequency shift, our experimental
scanning technique is less accurate for this purpose.) The
first important result we deduce from the field amplitude
spatial autocorrelation concerns the anisotropy of the ex-
ponential decay for a given mode. In our experimental
system, the scale separation between the localization
length and the size of the scattering system is most likely
not sufficient to observe a spatial decay with a single
characteristic length at large distances. The overall values
of �loc thus obtained are in complete agreement with the
minimal values of �theory. The finite size of the scattering
system is also known to influence the spectral widths due to
leakage at the boundary [18]. This influence is quantita-
tively described by the following relation between the
spectral partial width �leak due to leakage at the boundary,
the localization length �loc, and the distance R from the
center of the mode to the boundary:

 �leak / exp��2R=�loc�: (3)

This is readily demonstrated in our experiment. By reduc-
ing the size of the scattering region by steps of 2 cm we
experimentally obtained increasing values of the spectral
width for a given resonance. We then extracted the partial
width �leak from the measured total width �tot thanks to a
proper evaluation of the contribution �1 of Ohmic losses
[10]. The behavior of �leak given by relation (3) was
observed, in different realizations of disorder, for many
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FIG. 3 (color online). Comparison between experimental and
numerical maps of the amplitude of the electric field for local-
ized modes at 5.45 GHz (a),(d), at 5.66 GHz (b),(e), and at
7.80 GHz (c),(f ), the scattering region being a 25 cm� 25 cm
square. The numerical maps are obtained through finite-
difference time-domain (FDTD)-based simulations (with per-
fectly open boundary conditions).
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localized modes provided they were sufficiently well cen-
tered in the scattering region (otherwise, the above reduc-
tion was not feasible). This is illustrated in Fig. 4 for a
mode measured at 4.2 GHz in a scattering region of the
same size as before with a filling fraction of 5.5% and
dmin � 13 mm. In Fig. 4, ln���tot � �1�=�1� is plotted vs
the size 2R of the scattering region. The expected expo-
nential behavior is quantitatively verified if one uses, in-
stead of the localization length, a value close to the
maximal value of the range deduced from the spatial
autocorrelation: 1:4 cm 	 �loc 	 2:5 cm. All this con-
firms that the exponentially vanishing field of such modes
at the boundary involves all the scatterers of the system
through complex multiple interference effects. In conse-
quence, we can conclude that the modes we observe should
not be simply considered as defectlike modes or cavity
modes built by the mere presence of a few scatterers
surrounding them.

In summary, we have presented the unambiguous obser-
vation of strongly localized modes in a two-dimensional
open disordered microwave cavity. Most importantly, we
have investigated the influence of the finite size of the
scattering system on the structure of localized modes.
Indeed, we have found that the naive picture of exponen-
tially decaying spatial envelopes should be reconsidered in
view of the complex patterns of the observed modes.
Nonetheless, through the field amplitude spatial autocorre-
lation we extracted a range of localization lengths for a
given mode and successfully related the largest value to the
measured leakage rate at the boundary.

We are very grateful to Gregory Sauder for the automa-
tion of the data acquisition. D. L. acknowledges financial
support from DGA/CNRS Grant No. 2004487. This work

is supported by the Groupement de Recherche IMCODE
(CNRS No. 2253).

*fabrice.mortessagne@unice.fr
[1] A. Z. Genack and A. A. Chabanov, J. Phys. A 38, 10 465

(2005).
[2] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini,

Nature (London) 390, 671 (1997); F. Sheffold, R. Lenke,
R. Tweer, and G. Maret, Nature (London) 398, 206 (1999).

[3] R. L. Weaver, Wave Motion 12, 129 (1990); Phys. Rev. B
47, 1077 (1993).

[4] A. A. Chabanov, M. Stoychev, and A. Z. Genack, Nature
(London) 404, 850 (2000).

[5] M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, Phys.
Rev. Lett. 96, 063904 (2006); C. M. Aegerter, M. Störzer,
and G. Maret, Europhys. Lett. 75, 562 (2006).

[6] A. A. Chabanov, Z. Q. Zhang, and A. Z. Genack, Phys.
Rev. Lett. 90, 203903 (2003).

[7] Shanjin He and J. D. Maynard, Phys. Rev. Lett. 57, 3171
(1986); M. Belzons, P. Devillard, F. Dunlop, E. Guazzelli,
O. Parodi, and B. Souillard, Europhys. Lett. 4, 909 (1987);
D. T. Smith, C. P. Lorenson, R. B. Hallock, K. R. McCall,
and R. A. Guyer, Phys. Rev. Lett. 61, 1286 (1988);
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FIG. 4. Evolution of the reduced normalized width vs the size
2R of the scattering system for the mode shown in the inset. �1
is the contribution of Ohmic losses to the total spectral width
�tot � �leak � �1. The straight line is the best linear fit whose
absolute value of the inverse slope is 2:3
 0:2 cm.
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