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Collective Atomic Recoil Lasing with a Partially Coherent Pump
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We investigate the effect of pump phase noise on the collective backscattering of light by a cold,
collisionless atomic gas. We show that for a partially coherent pump field, the growth rate of the
backscattered field is reduced relative to that for a coherent pump, but the backscattered intensity can be
increased. Our results demonstrate that fluctuations and noise can play a counterintuitive role in

nonlocally coupled many-body systems.
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The interplay between noise and nonlinearity has long
been of interest to researchers from a broad range of
disciplines, as it produces numerous fascinating and often
counterintuitive phenomena. In nonlinear optics, collective
nonlinear interactions between cold matter and light, such
as collective light scattering [also termed collective atomic
recoil lasing (CARL)] and collective cooling have been the
subject of many theoretical and experimental studies over
the past decade [1-7]. Studies of collective and cooperative
phenomena using cold atoms in cavities are also of wider
relevance. Together with experimental advances they allow
fundamental studies of coherent and incoherent interac-
tions in nonlocally coupled many-body systems which are
relevant to plasma and beam physics, condensed matter,
and even neuroscience. In many complex systems in na-
ture, the environment is intrinsically noisy. In this Letter,
we study the effect of pump phase noise on the CARL
interaction.

A schematic diagram showing the situation under con-
sideration is shown in Fig. 1. Two optical fields, a strong
pump field and a weak probe field, interact with a cold,
collisionless atomic gas and the probe field circulates in a
high-finesse cavity. It is assumed that the probe field is
coherent, but that the pump field is only partially coherent,
its phase executing a random walk. It is also assumed that
the atomic cloud is a classical collisionless gas and that the
optical fields are classical and almost frequency degenerate
(lo) — @3] < w;,) (w, refers to the mean frequency of
the pump field). The pump and probe fields, which are
approximately counterpropagating where they interact
with the atoms, give rise to a spatially periodic optical
potential with approximate period A/2, where A = A, is
the pump or probe wavelength (similar to the case of a 1D
optical lattice). The atoms move in this potential under the
action of the dipole force to form a density grating with
spatial period A/2. The moving atoms in turn drive the
evolution of the backscattered cavity (probe) field.

Collective backscattering of a partially coherent pump
field which is far detuned from any atomic resonance and
sufficiently strong to remain undepleted during the atom-
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light interaction is described by the classical CARL equa-
tions [2] modified to include the effect of a stochastic pump
phase ¢,
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where 6; = 41rz;/ A is the scaled position of the jth atom
on the scale of the optical potential, p; = (mv;)/(hkp) is
the scaled momentum of the jth atom where m is the
atomic mass and k = 277/ is the pump or probe wave
number. 7 = w,pt is an adimensional time variable and the
collective atom-field coupling is determined by the CARL
parameter [1], p = (%)2/ 3 where ) = &
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FIG. 1 (color online). Schematic diagram showing collective
light scattering in a high-finesse unidirectional cavity. The mis-
alignment of the pump field from the z axis is exaggerated.
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n = N/V, is the atomic number density (with respect to
the cavity mode volume V.), E, is the amplitude of the
electric field of the pump field, and d is the dipole matrix
element for the atomic transition. The pump-atom detuning
A = w — w, is assumed to be much larger than the line-

width of the atomic transition and § = "’i;;" is the scaled
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plex) probe field amplitude, and the average (- - -) = ﬁ X
Zj-\;l(- -+);. The partial coherence of the pump field is
described using a phase diffusion model for the pump field
phase, ¢ [8], which is assumed to evolve according to
Eq. (4), where £(7) is a Gaussian random variable with
zero mean and variance I' such that £(7) =0 and
&(r)é(7 — T) = 2I'8(T) . This corresponds to a pump field
with a Lorentzian line shape and linewidth (phase diffusion
rate) of Awpyy, = @,pl" [8]. The temperature 7' of the
atomic gas is modeled by an initial Gaussian distribution of
the atomic momenta such that the probability of finding an
atom with a value of scaled initial momentum p, in the

pump-probe detuning. A = E, is the scaled (com-

—p2
range dp is f(po)dpo, where f(py) = ﬁ exp(gpzo), o=
hkp
that the cavity finesse is sufficiently high that the cavity
decay time is much longer than the time scale of the
evolution of the optical field due to the CARL interaction,
and for convenience that the average pump frequency w,

coincides with the frequency of a cavity mode.

In the case of an initially cold gas, it is possible to obtain
an analytical description of the average scattered field
intensity AA* by deriving equations for the second order
moments of the dynamical variables and neglecting terms
higher than second order in |A|. The large set of stochastic
ordinary differential equations (ODEs) (1)—(4) is thereby
approximated by the set of linear evolution equations

, and kp is Boltzmann’s constant. We have assumed
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Regions of instability (scattered field amplification) can
now be found by finding solutions of the characteristic
equation corresponding to Egs. (5)—(10), i.e.,

A[AS 4+ 4027 + (62 + 282)A° + (4173 + 4I'8%) A3
+ (0* + 21282 + §%H)A* + 46A°T
+ (4126 + 48% — 27)A2 — 36T'A — 122] = 0,

with Re(A) > 0. Figure 2 shows the behavior of the linear
growth rate of the scattered intensity A*A as a function of
pump-probe detuning & for different values of the pump
linewidth I'. It can be seen that in the case of a coherent
pump (I' = 0), the maximum growth rate occurs at § = 0
and there is a sharp cutoff such that no instability occurs for

6> \3/% ~ 1.9. It can also be seen that pump phase diffu-

sion (I' > 0) broadens the region of instability or gain and
removes the sharp instability cutoff at 6 > 0.

Before investigating the effect of a partially coherent,
phase-diffusing pump field on the nonlinear regime of the
CARL interaction, we first recover the limit of a com-
pletely coherent pump field. This is done by setting I' =
0, so that the pump phase is a constant which can be set to
zero. In this limit Egs. (1)—(3) reduce to the usual CARL
equations [2]. The evolution of the scaled cavity mode
intensity due to scattering of a coherent pump as calculated
from a numerical solution of Egs. (1)—(3) is shown in
Fig. 3(a) for the case of an initially cold atomic gas
(o = 0) and different values of pump-probe detuning &.
It can be seen that in the case of a cold gas with degenerate
pump and probe fields (6 = 0), which is usually consid-
ered to be the ideal for the CARL interaction, the cavity
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FIG. 2. Growth rate of the scaled cavity mode intensity A*A as
a function of pump-probe detuning & for different values of the
pump linewidth T".
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mode or probe undergoes exponential amplification until
saturation when |A|?> = 1.4 followed by quasiperiodic os-
cillation. This implies that the real probe intensity at
saturation scales as I, o n*3, indicating that the atoms
are scattering collectively. This behavior was recently
observed experimentally by Slama et al. [7] using a gas
of ultracold 3’Rb atoms enclosed in a bidirectional ring
cavity. In this coherent pump regime, amplification is due
to strong bunching and trapping of the atoms in the optical
potential, to form a strong density modulation with a
spatial period of A/2. When & # 0, the atomic velocity
is not resonant with the phase velocity of the ponderomo-
tive potential and the atoms become less strongly trapped
in the optical potential. As predicted by the linear analysis
described previously there exists a threshold value of &,

4 9
occurs, as shown in Fig. 3(a).

The effect of pump phase diffusion on the nonlinear
regime of the CARL interaction can be observed in
Fig. 3(b), which shows the evolution of the scaled cavity
mode intensity (averaged over 100 runs) for a partially
coherent pump field with scaled phase diffusion rate (line-
width) I' = 5, as calculated from the stochastic ODEs (1)—
(3). It can be seen that the value of the cavity mode
intensity at saturation |Ag,|> — & when & > 0. In contrast
to the case of coherent pumping [Fig. 3(a)] for 6 > 2 there
is strong amplification of the probe field. In fact, compar-
ing with Fig. 3(a) it can be seen that for 6 = 2 with a
partially coherent pump (I" = 5), although the growth rate
of the field is lower than in the case of the coherent pump,
the cavity mode intensity exceeds that attained at satura-
tion for the case of a coherent pump field.

The reason for the observed behavior can be deduced
from an analysis of the forces acting on the atoms. The
counterpropagating pump and probe fields combine to

o, = \72 above which no amplification of the cavity mode
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FIG. 3. Evolution of the scaled cavity mode intensity |A|?
(averaged over 100 runs) due to scattering of a (a) coherent
pump (I" = 0) and (b) partially coherent pump (I' = 5) by a cold
gas (o = 0) for different values of the pump-probe detuning 6.

form an optical potential with a stochastic phase velocity
which fluctuates stochastically about a mean value vy, =
ﬁc. Whether the atomic momentum increases or de-
creases depends on the atomic velocity relative to that of
the optical potential. The stochastic phase velocity of the
potential inhibits strong bunching and trapping of the
atoms observed in the case of a coherent pump field
[1,2]. Instead, with a noisy pump the interaction between
the atoms and the field eventually leads to the mean atomic
velocity synchronizing with the mean velocity of the opti-
cal potential, i.e., the atoms attain an average velocity
equal to the average phase velocity vy, of the optical
potential formed by the counterpropagating pump and
probe, i.e., (v) = vy, In the scaled notation used here,
this corresponds to the atoms eventually having scaled
momenta distributed around a mean value (p) = —3&.
Such synchronization between particle and wave (phase)
velocities is also the physical origin of Landau damping or
the Landau instability in a plasma [9]. Note that this simple
picture neglects the dynamical phase evolution of the probe
field, which modifies the phase velocity of the optical
potential during the interaction which is the physical origin
of the CARL instability in the case of a coherent pump
[1,2]. Consequently, the relation {p) — — & is best satisfied
when & > (21)!/3, and the dynamical phase evolution of the
probe field is negligible.

Because of conservation of momentum, which in the
scaled variables used here can be derived from Egs. (1)—(3)
to be (p) + |A|> = const, it can be seen that a decrease in
(p) causes an increase in |A|?, i.e., cavity mode amplifica-
tion. Based on this simple argument, we therefore expect
that saturation of the instability will occur when the scaled
probe intensity |A|?> = §. This implies that the real probe
intensity I, « n(w, — ), indicating that the atoms scat-
ter effectively independently when a noisy pump is used.
This simple mechanism for amplification is consistent with
the results from numerical simulations shown in Fig. 3(b).

As amplification using a partially coherent pump field
relies on synchronization between the atomic momentum
or velocity distribution and the phase velocity of the optical
potential, and not on a large degree of spatial bunching or
trapping of the atoms, it should therefore be significantly
less sensitive to thermal velocity spread in the atomic
distribution, relative to the case of the coherent pump.
Theoretical studies [2] supported by recent experimental
evidence [7] show that collective backscattering with a
coherent pump, i.e., usual CARL, requires a narrow veloc-
ity distribution (o < 1) in order that thermal debunching
or dephasing does not begin to wash out the strong peri-
odicity in the spatial distribution of atoms necessary for
strong probe amplification to occur. In contrast, Fig. 4(b)
shows that for a partially coherent pump (I" = 5), although
a larger thermal velocity spread does reduce the growth
rate of the probe amplification, the probe intensity at
saturation is almost the same as in the case of the cold
beam (i.e., |A]? — ).
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FIG. 4. Evolution of scaled cavity mode intensity (averaged
over 100 runs) due to scattering of (a) a coherent pump (I' = 0)
and (b) a partially coherent pump (I' = 5) showing the effect of
increasing temperature (velocity spread, o). Note that in (a) the
value of 6 used was 6 = o, as this is the condition for maximum
growth rate [11], whereas in (b) a value of § = 5 was used.

One possibility for experimental observation of the par-
tially coherent pump regime (I' > 1) described in this
Letter can be deduced from an inspection of the recent
experimental observation of CARL or superradiant
Rayleigh scattering carried out by Slama et al. [7]. In these
experiments an ultracold gas of 8’Rb atoms was enclosed
in a high-finesse bidirectional ring cavity, similar to the
schematic layout shown in Fig. 1, with the significant
difference that the pump field is also a cavity mode which
counterpropagates with respect to the probe field. The high
finesse of the cavity means that the pump field has a very
narrow linewidth (A wym, = 277 X 20 kHz). The charac-
teristic growth time of the CARL instability reported in [7]
was reported as being 7, = 1 us, which implies that
w,p =1, =10°s"! and therefore that p = 10 in this
experiment. Consequently, for the experiments reported
in [7] the scaled pump linewidth I' = A,/ (w,p) =
0.04. As I' <« 1, then the experimental results are well
described by a coherent pump model [2,7]. In order to
reach the regime of partially coherent pumping described
in this Letter, it would be necessary to increase the pump
linewidth until it became at least comparable with the gain
bandwidth of the CARL instability (I' > 1). In principle
this could be done by introducing some asymmetric losses
into the cavity such that the effective finesse of the cavity
for the pump field alone is reduced by a factor of at least
~25. In order to do this while maintaining the same degree
of coupling between the pump light and the atoms, i.e., the
same value of the p parameter, it would therefore also be
necessary to increase the pump power, decrease the pump-
atom detuning (typically the atoms are very far detuned by
~THz in [7]), or increase the atomic density n. From

Fig. 3(b) the characteristic growth time of the probe field
in the partially coherent pumping regime is expected to be
about a factor of 3 longer than in [7], i.e., ~3 us. It was
also shown in [7] that probe amplification disappeared
when the temperature of the atoms exceeded =~ 40 uK.
The results shown in Fig. 4(b) suggest that in the partially
coherent pumping regime, substantial probe amplification
may be observable at significantly higher temperatures.

In conclusion, a theoretical study of the CARL interac-
tion was performed in order to investigate the effect of
pump phase noise. It was found that the saturation intensity
of the backscattered field could be increased and was less
sensitive to thermal velocity spread compared to the case
of a coherent pump. Use of a partially coherent pump may
allow the production of significant backscattering at tem-
peratures significantly higher than in previous experiments
[5,7]. The phenomenon of optical amplification with a
partially coherent pump field described in this Letter has
features of both recoil-induced resonances (RIR) [10] and
CARL. Like RIR, maximum gain occurs off resonance
(6 > 0), only a small degree of spatial bunching is present,
and the atoms scatter independently. Unlike RIR, but in
common with CARL, high gain exponential amplification
of the probe field can occur. These results demonstrate that
the effect of fluctuations and noise in a nonlocally coupled
many-body system can counterintuitively enhance the re-
sponse of the system (in this case the probe field intensity).
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