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The exact solution of a two-scale Buchert average of the Einstein equations is derived for an
inhomogeneous universe that represents a close approximation to the observed universe. The two scales
represent voids, and the bubble walls surrounding them within which clusters of galaxies are located. As
described elsewhere [New J. Phys. 9, 377 (2007)], apparent cosmic acceleration can be recognized as a
consequence of quasilocal gravitational energy gradients between observers in bound systems and the
volume-average position in freely expanding space. With this interpretation, the new solution presented
here replaces the Friedmann solutions, in representing the average evolution of a matter-dominated
universe without exotic dark energy, while being observationally viable.
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At the time of last scattering the distribution of matter in
the universe was very smooth, given the evidence of the
cosmic microwave background (CMB). At the present
epoch, by contrast, the universe is very lumpy on scales
less than 100–300 Mpc, with clusters of galaxies strung in
filaments and bubbles surrounding huge voids. Some
40%–50% of the present volume [1] of the universe is in
voids of order 30h�1 Mpc in diameter, h being the dimen-
sionless Hubble parameter, H0 � 100h km sec�1 Mpc�1,
and when smaller and larger voids [2] are taken into ac-
count, then the observable universe is ‘‘void-dominated.’’

In spite of present-day inhomogeneity, a broadly iso-
tropic Hubble flow is observed when one averages on
sufficiently large scales. This is taken as justification for
assuming that cosmic evolution can be modeled by the
Friedmann equation for a smooth fluid, despite the obvious
observational evidence that galaxies are not smoothly dis-
tributed. To achieve agreement with a number of indepen-
dent observations within the smooth fluid paradigm, dark
energy has been included in the standard cosmological
model, posing a foundational mystery for physics.

In recent years, a number of cosmologists have ques-
tioned whether the observations, which have been inter-
preted as cosmic acceleration, might, in fact, be accounted
for by taking more care in deriving the geometry that
comes from averaging the actual inhomogeneous matter
distribution. In particular, the geometry that arises from the
time evolution of an initial average of the matter distribu-
tion does not generally coincide, at a later time, with the
average geometry of the full inhomogeneous matter distri-
bution evolved via Einstein’s equations [3]. Whether or not
the resulting ‘‘backreaction’’ of inhomogeneities on the
average geometry can be large enough to explain effects
usually attributed to cosmic acceleration from dark energy
in Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) mod-
els has been the subject of intense debate. (See [4].)

In this Letter I will derive the general exact solution to
the Buchert equations [3] for the two-scale model intro-
duced in Ref. [5], yielding a simple new observationally

viable model of the universe. The observational claim is
based on my proposal that the debate about dark energy
from structure formation [4] can be resolved by careful
consideration of the operational interpretation of measure-
ments in cosmology from first principles [5]. This is nec-
essary when averaging an inhomogeneous cosmology,
since in general the rods and clocks of observers will be
calibrated differently from those at an average location. In
writing down average parameters, one must define how
they are related to our measurements operationally.
Assuming the Copernican principle, the fact that we ob-
serve an almost isotropic CMB means that other observers
should also measure an almost isotropic CMB. However, it
does not demand that such observers measure the same
mean CMB temperature as we, nor the same angular scale
for the Doppler peaks in the anisotropy spectrum.
Significant differences can arise due to gradients in spatial
curvature and associated gravitational energy.

In general relativity space is dynamical and can carry
energy and momentum. By the strong equivalence princi-
ple, since the laws of physics must coincide with those of
special relativity at a point, it is only internal energy that
can be localized in an energy-momentum tensor on the
right-hand side of the Einstein equations. Thus the
uniquely relativistic aspects of gravitational energy asso-
ciated with gradients in spatial curvature, and gradients in
the kinetic energy of spatial expansion, cannot be included
in the energy-momentum tensor, but are at best described
by a quasilocal formulation. (For a review, see [6].)

In Ref. [5] I propose a quantitative solution to the prob-
lem of apparent cosmic acceleration through the technical
definition of a finite infinity scale, realizing a qualitative
suggestion of Ellis [7]. Finite infinity replaces the usual
notion of spatial infinity in exact asymptotically flat space-
times, as the fiducial reference point for quasilocal gravi-
tational energy with respect to observers in virialized
bound systems. A universal definition of this scale is
possible, since the initial expansion rate of the universe
was extremely smooth at last scattering, leading to a true
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critical density, �cr, as a demarcation between potentially
bound and unbound systems. Because of backreaction, �cr

does not evolve by the Friedmann equation.
While it has long been understood that averaging an

inhomogeneous universe entails the dressing of average
cosmological parameters [8] through volume factors that
relate to differences in spatial curvature, the proposal of
Ref. [5] recognizes that clock rates can also vary system-
atically between observers in bound systems within finite
infinity, and a volume-average position in freely expanding
space, due to differences in gravitational energy. By this
means an implicit solution of the Sandage–de Vaucouleurs
paradox [5] is possible: the locally defined or bare Hubble
parameter, �H, can be uniform even though voids appear to
expand faster than the bubble walls that surround them,
since cosmic clocks within voids tick faster on account of
gravitational energy differences. Since our cosmological
observations involve photons exchanged with objects in
bound systems, we do not observe clocks in freely expand-
ing space directly. Nonetheless, an ideal comoving ob-
server within a void would measure a somewhat older
age of the universe, and an isotropic CMB with a lower
mean temperature and an angular anisotropy scale shifted
to smaller angles.

Buchert’s scheme is somewhat heuristic, since it does
not average all of the Einstein equations and requires an
extra integrability condition to ensure closure. However,
starting from a fully covariant averaging scheme [9], with
reasonable cosmological assumptions, the correlation ten-
sor takes the form of a spatial curvature [10], and Buchert’s
scheme can be realized as a consistent limit [11].
Following Ref. [5], the Buchert average constructed here
is based on the two scales most relevant to the observed
universe: (i) the voids that dominate the universe at the
present epoch; and (ii) finite infinity regions containing
galaxy clusters within the filaments and bubble walls that
surround voids. The local average geometry at the bound-
ary of a finite infinity region is assumed to be spatially flat,
with the metric

 ds2
F I
� �d�2 � a2

w����d�2
w � �2

wd�2�: (1)

Within voids the metric is not given by (1) but is negatively
curved, with local scale factor av. We average over the
entire present epoch horizon volume, V � V i �a3, where
�a3 � fvia

3
v � fwia

3
w; fvi and fwi � 1� fvi are the respec-

tive initial void and wall volume fractions at last scattering,
to construct the Buchert average geometry

 ds2 � �dt2 � �a2�t�d ��2 � A� ��; t�d�2: (2)

Here the area function A is defined by a horizon-volume
average [5]. The time parameter t differs from the wall time
� of (1) by the mean lapse function dt � �����d�. The
geometry (2) is not locally isometric to the local geometry
in either the walls or void centers.

When the geometry (1) is related to the average geome-
try (2) by conformal matching of radial null geodesics, it

may be rewritten

 ds2
F I
� �d�2 �

�a2

��2 �d ��2 � r2
w� ��; ��d�2�; (3)

where rw � ���1� fv�
1=3f�1=3

wi �w� ��; ��. Two sets of cos-
mological parameters are relevant: those relative to an
ideal observer at the volume-average position in freely
expanding space using the metric (2), and conventional
dressed parameters using the metric (3). The conventional
metric (3) arises in our attempt to fit a single global metric
(1) to the universe with the assumption that average spatial
curvature and local clock rates everywhere are identical to
our own, which is no longer true.

The volume-average matter, curvature, and kinematic
backreaction parameters are given by ��M �

8�G ��M0 �a3
0=�3 �H2 �a3�, ��k � �kvf

2=3
vi f

1=3
v =� �a2 �H2�, and

��Q � � _f2
v=�9fv�1� fv� �H2�, respectively, where the av-

erage curvature is due to the voids only, which are assumed
to have kv < 0, an overdot denotes a derivative with respect
to volume-average time, t, and �H � _�a= �a is the volume-
average or bare Hubble parameter. It satisfies

 

�H � fvHv � fwHw; (4)

where Hv � _av=av and Hw � _aw=aw are the regional
average expansion rates of voids and walls, as measured
by volume-average clocks. We define hr�t� � Hw=Hv < 1.
The independent Buchert equations [3], including the in-
tegrability condition that ensures their closure, are

 

��M �
��k �

��Q � 1; (5)

 �a�6@t� ��Q
�H2 �a6� � �a�2@t� ��k

�H2 �a2� � 0: (6)

Conventional dressed parameters defined with respect to
the geometry (3), relevant to ‘‘wall observers’’ such as
ourselves, do not satisfy a simple relation analogous to
(5). The conventional matter density parameter, �M, is
expected to take numerical values similar to those we infer
in FLRW models. It differs from the bare volume-average
density parameter, ��M, according to �M � ��3 ��M. The
mean lapse function is given by

 �� � 1� h�1
r �1� hr�fv; (7)

as a result of the requirement that the bare, or ‘‘locally’’
measured, expansion rate is uniform. The dressed Hubble
parameter that we measure as wall observers, the global
average over both walls and voids, is not �H, but

 H � �� �H�
d
dt

�� � �� �H� ���1 d
d�

��: (8)

The Buchert Eqs. (5) and (6) may be reduced to the pair
of first order equations

 �1� fv�
_�a
�a
�

1

3
_fv �

�������������������������������������������������������
��M0

�H2
0�1� �i��1� fv�

�a3
0

�a3

s
; (9)
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_�a
�a
�

_fv
3fv
�

�H0 �a0

f1=3
v �a

�����������������������������������������
��k0

f1=3
v0

� ��M0�i
�a0

f1=3
v �a

vuut ; (10)

where �i 	 1 is an integration constant, obtained from a
first integral [5] of Eqs. (5) and (6), namely,

 �1� �i� ��2 ��M�1� fv��1 � 1:

Equations (9) and (10) are readily integrated. First we
multiply (9) by �H�1

0 �1� fv�
�2=3 �a to obtain

 

1
�H0

d
dt
��1� fv�1=3 �a� �

�������������������������������
��M0�1� �i� �a

3
0

�1� fv�1=3 �a

vuut
with the solution

 �1� fv�
1=3 �a � �a0��1� �i� ��M0�

1=3

�
3

2
�H0t
�

2=3
; (11)

where a constant of integration corresponding to the origin
of time has been set to zero without loss of generality.
Since f1=3

wi aw � �1� fv�
1=3 �a, we see that aw � aw0t

2=3,
where aw0 � �a0�

9
4 f
�1
wi �1� �i� ��M0

�H2
0�

1=3. Thus the local
expansion rate within the wall regions is exactly that of an
Einstein–de Sitter universe, but in volume average time,
not locally measured wall time.

Finally, we multiply (10) by �a�1
0

�H�1
0 f1=3

v �a to obtain

 

1
�H0

du
dt
�

�����������������������������
��k0

f1=3
v0

�
1�

C�
u

�vuut ; (12)

where u � f1=3
v �a= �a0 � f1=3

vi av= �a0 is proportional to av,
and C� � �i ��M0f

1=3
v0 =

��k0 is a constant that can either be
positive, zero, or negative depending on the initial value �i.
Integrating (12) we find

 

��������������������
u�u�C��

q
�C� ln

��������� u
C�

��������1=2
�

��������1�
u
C�

��������1=2
�
�
�
�a0
�t�t��;

(13)

where� � �a0
�H0

��1=2
k0 =f

1=6
v0 , and t� is a constant that cannot

be chosen to be zero without loss of generality, as the time
origin was already fixed in determining (11).

Equations (11) and (13) constitute the general exact
solution to the two-scale Buchert Eqs. (5) and (6), regard-
less of the physical interpretation of observable quantities.
In particular, the Buchert equations have been studied by a
number of authors without mention as to what the physical
interpretation of the time parameter t is. Here we will
pursue the interpretational framework of Ref. [5].

A number of quantities of interest may be found directly.
Since Hw � _aw=aw � 2=�3t�, and

 Hv �
_av
av
�

2

3t

������������������������������������������
�1� fv��i
fv�1� �i�

�
1�

u
C�

�s
;

it follows that

 hr �
Hw

Hv
�

������������������������������������������������������������
�1� �i� ��M0f

1=3
v0 fv

� ��k0u� ��M0f
1=3
v0 �i��1� fv�

vuut : (14)

Evaluating [�9� � fv�10�] at the present epoch, we obtain
the following constraint on parameters:

 

�������������������������������������������
�1��i� ��M0�1�fv0�

q
�

��������������������������������������
� ��k0�

��M0�i�fv0

q
�1: (15)

This reduces the number of free parameters by one; we
may take ��k0 as dependent, for example. The value of t� is
also determined in terms of the other parameters by eval-
uating (13) at the present epoch, to give 1

 

��3=2
k0

f1=2
v0

�H0�t0� t���
���������������������������������������
��k0�

��k0�
��M0�i�

q
� ��M0�i


 ln
� ������������������������������ ��k0

��M0�i

��������
vuut �

��������������������������������������1�
��k0

��M0�i

��������
vuut �

;

(16)

where the age of the universe in volume-average time is

 t0 �
2

3 �H0

��������������������������
1� fv0

�1� �i� ��M0

s
; (17)

on account of (11). We observe that the physical interpre-
tation of the void volume fraction ceases to be physically
meaningful in the limit t! 0 if t� > 0, as is generally the
case. Radiation must be included to describe the universe at
early times, and it has been omitted here. Here we restrict
attention to the matter-dominated epoch.

The general solution is specified by four independent
parameters, �H0, �i, ��M0, and fv0. However, two of these
may be further eliminated by taking priors [12] at the
surface of last scattering consistent with the CMB.

Since Eq. (13) is a transcendental equation, the combi-
nation of Eqs. (11) and (13) only defines �a�t� and fv�t�
implicitly in the general case. Nonetheless, at late times
when both t and u are large, all general solutions to (13)
tend to the particular solution with �i � 0 and t� � 0. This
particular solution is, in fact, a late-time tracker solution,
an attractor that is insensitive to hri and fvi, as long as the
observable universe is void dominated.

As C� � 0 when �i � 0, Eq. (13) yields a particularly
simple form for the late-time tracker solution. Since
f1=3
vi av � f1=3

v �a � �a0u, we see that it corresponds to the
case in which the void regions expand exactly as a Milne
universe in volume-average time, av � av0t, where av0 �
��1=2
k0 �a0

�H0f
�1=6
v0 f�1=3

vi . It follows that hr � Hw=Hv � 2=3
is a constant for this special solution. If we combine (15)
with (14) evaluated at the present epoch, we see that only
one of the parameters ��M0, ��k0, and fv0 is independent,
and ��M0�4�1�fv0�=�2�fv0�

2, ��k0 � 9fv0=�2� fv0�
2.
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Consequently, the volume-average scale factor is

 �a�
�a0�3 �H0t�

2=3

2�fv0
�3fv0

�H0t��1�fv0��2�fv0��
1=3 (18)

for the late-time tracker, while its void fraction is

 fv �
3fv0

�H0t

3fv0
�H0t� �1� fv0��2� fv0�

; (19)

and the wall fraction is easily deduced from fw � 1� fv.
In terms of fv�t�, the mean lapse function, bare Hubble
parameter and bare matter density have the forms ���t� �
3
2 t

�H�t� � 1� 1
2 fv, and ��M�t� � 4�1� fv�=�2� fv�2.

The tracker-solution dressed Hubble parameter (8) is

 H � 2=�3t� � fv�4fv � 1�=�6t�: (20)

Other dressed parameters [5] using the metric (3) relevant
to galactic wall observers include the redshift, z, and
luminosity distance, dL � ���1

0 �a0�1� z�rw, where rw �
���1� fv�

1=3
Rt0
t dt0=f ���t0��1� fv�t

0��1=3 �a�t0�g. For the
tracker solution these, respectively, satisfy

 z� 1 �
�a0 ��
�a ��0
�
�2� fv�f

1=3
v

3f1=3
v0

�H0t
; (21)

 

�H0dL
�1� z�2

� � �H0t�2=3
Z t0

t

2 �H0dt
0

�2� fv�t0��� �H0t0�2=3
: (22)

This last integral can be given in a simple closed analytic
form. These expressions are given in terms of volume-
average time. To convert to wall time relevant to galactic
observers, we perform the integral, � �

R
t
0 dt ���1, giving

 � �
2

3
t�

4�M0

27fv0
�H0

ln
�

1�
9fv0

�H0t
4�M0

�
; (23)

where �M0 �
1
2 �1� fv0��2� fv0� is the present epoch

dressed matter density in the case of the tracker solution.
In (20) and (22) the parameter t should be considered to be
implicitly defined by (23) in terms of wall time, �. At late
times as t! 1, �� 2

3 t, so that H� 3
2 t
�1 � ��1, as for an

empty Milne universe.
The age of the universe in volume-average time is t0 �

�2� fv0�=�3 �H0�, and

 �0 �
2�2� fv0�

9 �H0

�
1�
�1� fv0�

3fv0
ln
�

2� fv0

2�1� fv0�

��
; (24)

in wall time. The dressed Hubble constant we measure,H0,
is related to the bare Hubble constant, �H0, by

 H0 �
�4f2

v0 � fv0 � 4� �H0

2�2� fv0�
: (25)

Finally, the volume-average tracker-solution deceleration
parameter is �q � 1

2
��M � 2 ��Q � 2�1� fv�2=�2� fv�2,

which begins close to the Einstein–de Sitter value, �q�
1
2 , when fv is small, and approaches �q! 0� at late times,

but remains positive at all times. Thus a volume-average
observer in freely expanding space detects no cosmic
acceleration. Nonetheless, a bound system observer mea-
sures an effective dressed deceleration parameter

 q �
��1� fv��8f

3
v � 39f2

v � 12fv � 8�

�4� fv � 4f2
v�

2 ; (26)

which also begins at the Einstein–de Sitter value, q� 1
2 ,

for small fv but then changes sign at epoch when fv ’
0:5867, at a zero of the cubic in (26). Apparent acceleration
reaches a maximum when fv ’ 0:7736 when q ’ �0:043,
and then q! 0� at late times. Thus a wall observer
registers a late-time evolution also close to that of a
Milne universe, but this time with apparent acceleration.

While the initial conditions of the CMB require that
hr ! 1 at last scattering, for observationally relevant initial
conditions, the general solution (11) and (13) approaches
the tracker solution to within 1% by a redshift of z� 37.
Thus the tracker solution can be used as a very reliable
approximation all the way back to the epoch of reioniza-
tion. It is effectively the simplest viable generalization of
the Einstein–de Sitter and Friedmann models, which in-
corporates backreaction, and is potentially of great utility.
Detailed cosmological parameter fits are presented else-
where [12] and demonstrate that the present fractal bubble
model [5] is at the very least a serious contender for
quantitatively solving the problem of dark energy purely
within general relativity. The analytic solution presented
here, and its simple tracker limit, should therefore provide
the basis for many future cosmological tests.

[1] F. Hoyle and M. S. Vogeley, Astrophys. J. 566, 641 (2002);
Astrophys. J. 607, 751 (2004).

[2] A. V. Tikhonov and I. D. Karachentsev, Astrophys. J. 653,
969 (2006); L. Rudnick, S. Brown, and L. R. Williams,
Astrophys. J. 671, 40 (2007).

[3] T. Buchert, Gen. Relativ. Gravit. 32, 105 (2000).
[4] S. Räsänen, J. Cosmol. Astropart. Phys. 11 (2006) 003;
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