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Transport of quantum information in linear spin chains has been the subject of much theoretical work.
Experimental studies by NMR in solid state spin systems (a natural implementation of such models) is
complicated since the dipolar Hamiltonian is not solely comprised of nearest-neighbor XY-Heisenberg
couplings. We present here a similarity transformation between the XY Hamiltonian and the double-
quantum Hamiltonian, an interaction which is achievable with the collective control provided by radio-
frequency pulses. Not only can this second Hamiltonian simulate the information transport in a spin chain,
but it also creates coherent states, whose intensities give an experimental signature of the transport. This
scheme makes it possible to study experimentally the transport of polarization beyond exactly solvable
models and explore the appearance of quantum coherence and interference effects.
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In many solid state proposals for quantum information
processing an essential task is the transport of information
over relatively short distances. Today there are no proven
schemes for accomplishing this chore despite many prom-
ising proposals. One approach is to use linear spin chains
coupled by the XY-Heisenberg Hamiltonian [1,2]. Various
protocols have been proposed to obtain perfect state trans-
fer in this system, involving engineering the couplings [3]
or the Hamiltonian [4]. Usually these schemes are based on
nearest-neighbor (NN) couplings, which allow for analyti-
cal solutions of the dynamics. Beyond the 1D, NN limit,
the dynamics becomes richer and quantum interferences
appear. Experimental studies would enable us to go beyond
this limit, while keeping the fundamental symmetries of
the Hamiltonian. While optical lattices have been proposed
as versatile quantum simulators for a variety of spin
Hamiltonians [5], here we propose to use a system closer
to the simulated one—a pseudo-1D dipole coupled spin
chain—taking advantage of the control methods devel-
oped by the NMR community to explore dynamics close
to the solvable model. In addition, a quantum simulation of
this transport mechanism will connect to studies of spin
diffusion [6].

In this Letter we show how well-known NMR pulse
sequences can be used to experimentally study the trans-
port of quantum information, in collectively controlled,
room temperature linear spin chains. Quasi-1D spin sys-
tems are available in some materials like apatites [7]. We
first introduce a Hamiltonian [the so-called double-
quantum (DQ) Hamiltonian] that is connected to the
XY-Hamiltonian by a similarity transformation and is ob-
tained experimentally by sequences of pulses and delays in
dipolar spin systems. We show how this Hamiltonian can
simulate the transport dynamics for relevant initial states,
by comparing the probability of transfer for the two Hamil-
tonians. We show furthermore that the DQ Hamiltonian
enables the detection of successful transport, even if it is
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not possible to measure single nuclear spins. Although the
experiment we propose is an approximation of the ideal
model (and as such is not an implementation of a quantum
information bus) it permits the experimental study of per-
turbations to this model, such as contributions from next-
nearest neighbors or other chains, that yield a richer phys-
ics (for example, a crossover to nonintegrable systems [8]).

Transport of Zeeman and dipolar energy in spin systems,
caused by energy conserving spin flips, has been a long
term interest in spin physics and more recently in quantum
information science [9,10]. The evolution of the system
induced by the secular dipolar Hamiltonian 7 dip =
Yidilotol — S (olot + oio})], is coherent (as proved
by the observation of polarization echoes [11]), but the
complexity of the interaction encodes information about
the created many-body states in observables that are not
directly measurable in NMR experiments. The free-
evolution transport presents the signature of an apparent
diffusive behavior [6], with an effective decay time T
much shorter than spin-lattice relaxation times.
Refocusing experiments can extend the transverse relaxa-
tion T, to much larger values, although still quite far from
the theoretical limit of the longitudinal relaxation 7. If no
special assumptions are made on the values of the dipolar
couplings [12] or the initial state [13], spin diffusion (that
is, evolution under the secular dipolar Hamiltonian) cannot
transfer the polarization from the first to the last spin with
any appreciable efficiency [14], even for a small number of
spins in linear chains. On the other hand, a simpler
Hamiltonian, the NN XY interaction,

d, . . o
ny = 2§(U§U§+l + 0';0';“
l
= Zd((ri+ ot + gl gith),
7
has been studied extensively for perfect transport purposes,
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but it is not found naturally in spin systems. It has been
shown that perfect transport of a state is possible only for
chains up to 3 spins [3], but if one can engineer the
coupling strength [15] or add external manipulation of all
the spins [16] or even just of the spins at the chain ends
[17], perfect transport is achievable for chains of arbitrary
length.

Unfortunately, given the dipolar Hamiltonian it is im-
possible with only collective control to obtain the
XY-Hamiltonian. With collective control, by means of a
sequence of radio-frequency (rf) pulses and delays [18],
we can create the DQ Hamiltonian:

di; . o
}[dq=27](a'fva'§—0'"vaJy)

ij
= Zd,»,j((r’;oj+ + olol).

Lj

A simple unitary transformation links the DQ and XY
Hamiltonians if we restrict the couplings to the nearest-
neighbor spins [19]. The transformation, however, cannot
be obtained by an rf pulse sequence, since it is not a
collective operation:

g-[xy = Ugé}[dq(Uéé)T,

Ugg = exp(—z—z X),

where the sum is restricted to either even or odd spins.
Since the two Hamiltonians are related by a similarity
transformation, the DQ Hamiltonian (experimentally avail-
able) can simulate the dynamics of the XY Hamiltonian,
provided one can prepare initial states and detect observ-
ables which are invariant under the transformation. With
these assumptions, even if the similarity transformation
Ugg is not explicitly applied, the evolution of these par-

ticular initial states is the same. For thermally polarized
spin systems at 7> 100 mK, an obtainable initial state
relevant to this problem is to have just one-spin polarized
[20], p(0) = (1, + “0%) ® 1y, (in the following we

will only consider the deviation of the density matrix
from identity, which is its only experimentally observable
part). Since this state is invariant under the transformation
Uéé, the DQ-Hamiltonian opens the possibility to experi-
mentally study spin transport in dipolarly coupled systems.
Incidentally, the pure state usually considered in theoreti-
cal studies—the one-spin excitation state—is not invari-
ant under the transformation.

Notice that the relationship between the XY and DQ
Hamiltonian is also valid in two and three dimensions (and
in general on hypercubes of any dimensions, which have
already been shown to allow perfect state transport under
the XY interaction [15]). These spin systems can be
thought of as treelike graphs [21]. A spin at one edge of
the D-dimension hypercube is at the top of the tree, and has
D neighbors in the following level; in general each node
has D links to the upper and lower levels. The similarity

transformation is performed by flipping all the spins of
either the odd or even levels.

We study the polarization transfer given by the XY and
DQ Hamiltonian, when the transformation Uﬁé is not ex-
plicitly applied (as in experiments). The dynamics is
solved in terms of fermion operators and of their Fourier
transform [19,20,22]:

j—1 N
- _ ISP — B
Cj = ll:ll(O'Z)O'L, a, = m; Sln(k])Cj,
where k = 4, n € integers. The NN coupling XY

Hamiltonian is diagonal in terms of fermion operators:

}[Xy = dZ(c;-fch + cjc;rﬂ) = ZdZ cos(k)a,:fak. (1)
J k

In order to diagonalize the DQ Hamiltonian, we need a
further transformation to Bogoliubov operators [23]: a; =
\/-(ykdk + d_k) where v, = sgn(k). We finally obtain a
diagonal form,

H g = —2d cosk(d]dy +d'd_ — 1), (2)
k

with the same eigenvalues as the XY Hamiltonian.
Assuming that the polarization resides initially just on
spin j, the initial state is

PO =5 -

Nl Z sin(k;) sm(h])akah,

which evolves under the XY Hamiltonian (1) as

Xy W=yt o
(t) 2 N+IZSIH(]<J)SII’1(/’1])6 talay,

where i, (r) = 2dt cosk. At a time 7, the polarization trans-
ferred to another spin [ is given by Tr[p;y(t)alz],
4

P;(ly(t) = (N + 1)2

> sin(k)) sin(kl)e
k

Evolution under the DQ Hamiltonian with the same initial
state yields

1
P50 =5 -

N Z sin(kj) sin(hj)[i sing () cosy, (1)

X (aha_k — a_ay) + (cosi (1) COS‘//h(f)ak ap

+ singy (1) Sinl/lh(t)aha}:)]
and the polarization transferred to the / spin at time ¢ is
4 4 2
WRG[@ sin(k/) sin(kl)e—w) }

where Re[-] is the real part of a complex number. The
polarization transfer is the same if the difference b — a is

even: P;fly(t) =
a fully dipole coupled chain the difference between the

d
leq(t) =

P?,q(t) (see Fig. 1). Even when considering
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L — Pol. 15t spin D_; poL st ¢©(q) = q¢. The system is then brought back to a single-
09k opin Pol.Nth spin —- coherence state in order to be measured, with the phases
08 now transformed into population differences. The experi-
o7 ment is repeated M, times, systematically incrementing
25 ¢ =2mk/M, (k=1,...,M,), so that the signal can be
oali Fourier-transformed with respect to it, yielding the inten-
0a i sity of each coherence. Restricting the interaction to
02 nearest-neighbor only in 1D, the zero- and double-quantum
o1t intensities J,, (1) = Tr[p® p(~®] can be calculated analyti-
0 ] 5 cally [20], yielding for an initial state with only spin j

3
t (ms)

FIG. 1 (color online). Polarization transfer from spin one to
spin N for a chain of 21 spins with NN coupling only; the results
of evolution under double-quantum and XY Hamiltonian are
superimposed. The dipolar coupling strengths considered are
those found in a Fluorapatite crystal [20]. In the inset, simula-
tions for 11 spins in a fully coupled dipolar spin chain. The
differences in signal between the evolution under the full DQ and
XY Hamiltonian are small for the times of interest, allowing for
transport from one end of the chain to the other and back.

polarization transferred by the DQ and XY Hamiltonian
remains small for the times of interest as shown in the inset
of Fig. 1. In the case where the difference / — j is odd, only
the absolute values of the two polarization transfer are

equal (P}(ly(t) =|| P?,q(t) [|), since the observable is no
longer invariant under the similarity transformation and
one should have applied the transformation Uy explicitly

to recover the exact equivalence.

More generally, if we measure a different observable
than o, we expect different behaviors whether the evolu-
tion is driven by H, dq Orf H xy- In particular the
XY-Hamiltonian conserves the total magnetic number
(the system remains in the zero-quantum coherence mani-
fold), while the DQ Hamiltonian can create multiple quan-
tum coherence (MQC), states that show a coherence
between different z-magnetic moment states [18]. In the
NN coupling limit, the DQ Hamiltonian creates only zero
and double-quantum coherences [19].

This property of the DQ Hamiltonian provides a means
to detect the occurred transfer of polarization. The trans-
port of polarization cannot be detected directly (unless one
could introduce very strong magnetic field gradients or if
one could perform single-spin detection). In the case of
double-quantum dynamics, however, there is a correlation
between the coherence intensities and the transport of the
spin state, which arise from boundary effects in finite
length spin chains [24].

MQC intensities can be detected in NMR, by encoding
the coherence order into a phase associated with collective
rotations around the z axis [18,25]. In MQC experiments,
states with higher coherence orders are first prepared, for
example, using FH g, p(0)—=Hap = qu(‘”, where ¢ in-
dicates the coherence order. A ¢-rotation around the z axis,
obtained with collective control, tags each coherence com-
ponent with a phase proportional to its coherence order

polarized

Jj(0) = (N Zsmumz sin(jh)? cos[y() + ¢ (DT,

K0 =55 1)2 2. sin(kj)*sin(hj)? sinl (1) + (o)

These intensities present a beating every time the polar-
ization reaches spin N + 1 — j and back to j. These beat-
ings are particularly clear for the transfer from spin 1 to
spin N, although they would exist for the magnetization
starting at any spin in the chain. If one is therefore inter-
ested in the transfer of polarization from one end of the
chain to the other, it is possible to follow the transfer driven
by the DQ Hamiltonian by measuring the MQC intensities.
If the measurement can only detect the total magnetization,
the MQC intensities are then calculated from Tr[ p(r)=") X

(Ugq Y. O'ZU;rq)(")], resulting in

Tol(r) = TES )Zsmz(k])cos22¢1k(t)

Tl (1) = D sin? (kj)sin®244; (1),

(N+1)

and a less visible signature (as shown in Fig. 2).

It has been shown [20] that with collective coherent and
incoherent control it is possible to create the initial state
ol + ol (even if it is not possible to break the symmetry
between the two spins at the end of the chain). In Fig. 2 we
show the transport and detection method results for this
particular initial state, realizable experimentally. The beat-
ing of the MQC intensities is now faster than the transfer of
polarization, since the coherences start spreading out from
the two opposite ends of the chain and an extremum in the
MQC intensity is created when the two waves meet at the
center of the chain as well as when they bounce off the
boundaries. This classical interference occurs with a posi-
tive or negative phase, depending on the number (odd or
even, respectively) of spins in the chain. Every two beat-
ings, however, the maximum of the zero-quantum intensity
correspond to the transport of polarization from one end to
the other. This is the experimentally measurable signature
that transport of polarization has occurred.
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FIG. 2 (color online). MQC intensities and polarization trans-
fer in a 21-spin chain. The initial state was the one we can
prepare experimentally, p, = ol + o [20].

An experimental study of this scheme can be imple-
mented in single crystal of fluorapatite [7,20]. These crys-
tals present a quasi-1D structure, where fluorine spins-1/2
are arranged in linear chains, with the cross-chain cou-
plings much smaller than the in-chain couplings (40:1 in a
particular crystal orientation). Good control, long decoher-
ence times and the availability of the desired initial state
make this system very promising. In addition, a real system
will provide more insight into the limitations of the NN
coupling approximation. There already exist schemes for
reducing a long-distance interaction to nearest-neighbors
only [26], but they are valid only for a restricted number of
spins. On the other hand it is interesting to study the role of
the long-range couplings in accelerating or impeding the
transport. Next-nearest-neighbor couplings and cross-
chain couplings offer additional pathways that can result
in an acceleration of information transport, which has no
classical counterpart, as already observed in the transport
of dipolar energy in spin diffusion [10]. It will be interest-
ing to investigate the differences between the predicted rate
of transport and the experimental one, to observe the
effects of the additional couplings on the spin dynamics.

In conclusion, we have shown how the DQ Hamiltonian
simulates the transport of polarization and enables its
detection. This is made possible by the observation that
not only is this Hamiltonian related to the XY interaction
via a similarity transformation, but it also creates coherent
states, whose intensities are correlated to the transport of
polarization and can be measured experimentally. With this
scheme it will be possible to study experimentally, in solid
state NMR systems, the transport of polarization beyond
exactly solvable models and explore the appearance of
quantum coherence and interference effects.
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