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Shor’s powerful quantum algorithm for factoring represents a major challenge in quantum computation.
Here, we implement a compiled version in a photonic system. For the first time, we demonstrate the core
processes, coherent control, and resultant entangled states required in a full-scale implementation. These
are necessary steps on the path towards scalable quantum computing. Our results highlight that the
algorithm performance is not the same as that of the underlying quantum circuit and stress the importance
of developing techniques for characterizing quantum algorithms.
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As computing technology rapidly approaches the nano-
scale, fundamental quantum effects threaten to introduce
an inherent and unavoidable source of noise. An alternative
approach embraces quantum effects for computation.
Algorithms based on quantum mechanics allow tasks im-
possible with current computers, notably an exponential
speedup in solving problems such as factoring [1]. Many
current cryptographic protocols rely on the computational
difficulty of finding the prime factors of a large number: a
small increase in the size of the number leads to an ex-
ponential increase in computational resources. Shor’s
quantum algorithm for factoring composite numbers faces
no such limitation, and its realization represents a major
challenge in quantum computation.

To date, there have been demonstrations of entangling
quantum-logic gates in a range of physical architectures,
ranging from trapped ions [2,3], to superconducting cir-
cuits [4], to single photons [5—12]. Photon polarization
experiences essentially zero decoherence in free space;
uniquely, photonic gates have been fully characterized
[6], produced the highest entanglement [8], and are the
fastest of any architecture [11]. The combination of long
decoherence time and fast gate speeds make photonic
architectures a promising approach for quantum computa-
tion, where large numbers of gates will need to be executed
within the coherence time of the qubits.

Shor’s algorithm can factor a k-bit number using 72k
elementary quantum gates; e.g., factoring the smallest
meaningful number, 15, requires 4608 gates operating on
21 qubits [13]. Recognizing this is well beyond the reach of
current technology, Ref. [13] introduced a compiling tech-
nique which exploits properties of the number to be fac-
tored, allowing exploration of Shor’s algorithm with a
vastly reduced number of resources. Although the imple-
mentation of these compiled algorithms does not directly
imply scalability, it does allow the characterization of core
processes required in a full-scale implementation of Shor’s
algorithm. Demonstration of these processes is a necessary
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step on the path towards scalable quantum computing.
These processes include the ability to generate entangle-
ment between qubits by coherent application of a series of
quantum gates. In the only demonstration to date, a com-
piled set of gate operations were implemented in a liquid
NMR architecture [14]. However, since the qubits are at all
times in a highly mixed state [15], and the dynamics can be
fully modeled classically [16], neither the entanglement
nor the coherent control at the core of Shor’s algorithm can
be implemented or verified.

Here, we implement a compiled version of Shor’s algo-
rithm, using photonic quantum-logic gates to realize the
necessary processes, and verify the resulting entanglement
via quantum state and process tomography [17,18]. We use
a linear-optical architecture where the required nonlinear-
ity is induced by measurement; current experiments are not
scalable, but there are clear paths to a fully scalable quan-
tum architecture [19,20]. Our gates do not require preex-
isting entanglement, and we encode our qubits into the
polarization of up to four photons. Our results highlight
that the performance of a quantum algorithm is not the
same as performance of the underlying quantum circuit
and stress the importance of developing techniques for
characterizing quantum algorithms.

Only one step of Shor’s algorithm to find the factors of a
number N requires a quantum routine. Given a randomly
chosen co-prime C (where 1 < C <N and the greatest
common divisor of C and N is 1), the quantum routine
finds the order of C modulo N, defined to be the minimum
integer r that satisfies C" mod N = 1. It is straightforward
to find the factors from the order. Consider N = 15: if we
choose C = 2, the quantum routine finds r = 4, and the
prime factors are given by the nontrivial greatest common
divisor of Cr/2 * 1 and N, i.e., 3 and 5; similarly, if we
choose the next possible co-prime, C = 4, we find the
order r = 2, yielding the same factors.

Figure 1(a) shows a conceptual circuit of the quan-
tum order-finding routine. It consists of three distinct
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FIG. 1 (color online). (a) Conceptual circuit for the order-
finding routine of Shor’s algorithm for number N and co-prime
C [13]. The argument and function registers are bundles of n and
m qubits; the nested order-finding structure uses Uly) =
|Cy modN), where the initial function-register state is |y) = 1.
The algorithm is completed by logical measurement of the
argument register, and reversing the order of the argument
qubits. (b,c) Implementation of (a) for N = 15 and C = 4, 2,
respectively; the unitaries are decomposed into controlled-swap
gates (CSWAP), marked as X; controlled-phase gates are marked
by dots; H and T represent Hadamard and 7r/8 gates. Many
gates are redundant, e.g., the second gate in (b), the first and
second gates in (c). (d,e) Partially-compiled circuits of (b,c),
replacing CSWAP by controlled-not gates. n.b. (e) is equivalent to
the N =15 C =7 circuit in Ref. [14]. (f,g) Fully-compiled
circuits of (d,e), by evaluating log-[C* modN] in the function-
register.

steps: (i) register initialization, 10)®"|0)®™ — (|0) +
[)er 01y = SZ5 [0} 1), where the
argument-register is prepared in an equal coherent super-
position of all possible arguments (normalization omitted
by convention); (ii) modular exponentiation, which by
controlled application of the order-finding function pro-
duces the entangled state 270! |x)|C*modNY); (iii) the
inverse Quantum Fourier Transform (QFT) followed by
measurement of the argument-register in the logical basis,
which with high probability extracts the order r after
further classical processing. If the routine is standalone,
the inverse QFT can be performed using an approach based
on local measurement and feedforward [21]. Note that the
inverse QFT in [14] was unnecessary: it is straightforward
to show this is true for any order-2! circuit [22].

Modular exponentiation is the most computationally
intensive part of the algorithm [13]. It can be realized by
a cascade of controlled unitary operations, U, as shown in
the nested inset of Fig. 1(a). It is clear that the registers

become highly entangled with each other: since U is a
function of C and N, the entangling operation is unique to
each problem. Here, we choose to factor 15 with the first
two co-primes, C = 2 and C = 4. In these cases, entire sets
of gates are redundant: specifically, U>" = I when n >0
for C=4, and U* =1 when n>1 for C =2. Fig-
ures 1(b) and 1(c) show the remaining gates for C = 4
and C = 2, respectively, after decomposition of the uni-
taries into controlled-swap gates—this level of compiling
is equivalent to that introduced in Ref. [14]. Further com-
pilation can always be made since the initial state of the
function-register is fixed, allowing the CSWAP gates to be
replaced by controlled-not (CNOT) gates as shown in
Figs. 1(d) and 1(e) [23].

We implement the order-2-finding circuit, Fig. 1(d). The
qubits are realized with simultaneous forward and back-
ward production of photon pairs from parametric down-
conversion, Fig. 2(a): the logical states are encoded into the
vertical and horizontal polarizations. This circuit requires
implementing a recently proposed three-qubit quantum-
logic gate, Fig. 2(b), which realizes a cascade of n
controlled-z gates with exponentially greater success than
chaining 7 individual gates [24]. The controlled-not gates
are realized by combining Hadamards and controlled-z
(cz) gates based on partially polarizing beam splitters.
The gates are nondeterministic; when fully pre-biased,
success probability is 1/4 [8—10]. A run of each routine
is flagged by a fourfold event, where a single photon
arrives at each output. Dependent photons from the for-
ward pass interfere nonclassically at the first partial polar-
izer, Fig. 2(d); one photon then interferes with an in-
dependent photon from the backward pass at the second
partial polarizer. We measure relative nonclassical visibili-
ties, V., = Vieas/ Videar» of 98 = 2% and 85 * 6%.

Directly encoding the order-4 finding circuit, Fig. 1(e),
requires six photons and at least one three-qubit and five
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FIG. 2 (color online). Experimental schematic. (a) Forward
(F1, F2) and backward (B1,B2) photons pairs are produced via
parametric down-conversion [22]. (b,c) Linear-optical circuits
for order-2 and order-4 finding algorithms, with inputs from (a)
labeled; the letters on the detectors refer to the Fig. 1 qubits.
(d,e) Physical optical circuits for (b,c), replacing the classical
interferometers with partially polarizing beam splitters.
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two-qubit gates. This is currently infeasible: the best six-
photon rate to date [12] is 30 mHz, which would be
reduced by 6 orders of magnitude using nondeterministic
gates. To explore an order-4 routine, and the different
processes therein, further compilation is necessary. In par-
ticular, we can compile circuits 1(d) and 1(e) by evaluating
logc[C*modN] in the function-register in place of
C*modN. This requires log,{log-[N]} function qubits, as
opposed to log,[N]; i.e., for N = 15, C = 2, the function-
register reduces from 4 to 2 qubits. Note that this full
compilation maintains all the features of the algorithm as
originally proposed in Ref. [13]. Thus, the order-4 circuit,
Fig. 1(e), reduces to a pair of CNOTS, allowing us to imple-
ment the circuit in Fig. 1(g). We use a pair of compact
optical gates [8§—10], Fig. 2(c) and 2(e), each operating on a
dependent pair of photons, resulting in measured visibil-
ities for both of V, = 98 * 2%.

Figure 3 shows the measured density matrices of the
argument-register output for both algorithms, sans the re-
dundant top-rail qubit [25]. Ideally, these are maximally-
mixed states [22]: in all cases, we measure near-unity
fidelities [26,27]. The output of the routines are the logical
state probabilities, i.e., the diagonal elements of the matri-
ces. Combining these with the known state of the redun-
dant qubit, and reversing the argument qubits as required,
gives the binary outputs of the algorithm which after
classical processing yields the prime factors of N. In the
order-2 circuits the binary outputs of the algorithm are 00
or 10: the former represents the expected failure mode of
this circuit, the latter a successful determination of r = 2;
failure and success should have equal probabilities; we
measure them to be 50% to within error. Thus, half the
time the algorithm yields » = 2, which gives the factors, 3
and 5. In the order-4 circuit, the binary outputs are 000,
010, 100, and 110: the second and fourth terms yield the
order-4 result, the first is a failure mode, and the third
yields trivial factors. We measure output probabilities of
25% to within error, as expected. After classical processing
half the time, the algorithm finds r = 4, again yielding the
factors 3 and 5.

FIG. 3 (color online). Algorithm outputs given by measured
argument-register density matrices. The diagonal elements are
the logical output probabilities. (a) Order-2 algorithm. The
fidelity with the ideal state is F = 99.9 = 0.3%, the linear
entropy is S; = 100 = 1% [27]. Combined with the redundant
qubit, the logical probabilities are {Pgo, Pio} = {52, 48} = 3%.
(b) Order-4 algorithm, F =98.5*0.6% and S; = 98.1 = 0.8%.
The logical probabilities are {Pgog, Poig» P1oo» P10} ={27,23,24,
27} *+2%. Real parts shown, imaginary parts are less than 0.6%.

These results show that we have near-ideal algorithm
performance, far better than we have any right to expect
given the known errors inherent in the logic gates [8,28].
This highlights that the algorithm performance is not al-
ways an accurate indicator of circuit performance since the
algorithm produces mixed states. In the absence of the
gates, the argument-register qubits would remain pure; as
they are mixed, they have become entangled to something
outside the argument register. From algorithm perform-
ance, we cannot distinguish between desired mixture aris-
ing from entanglement with the function-register, and
undesired mixture due to environmental decoherence.
Circuit performance is crucial if it is to be incorporated
as a subroutine in a larger algorithm, Fig. 1(a), 1(e), and
1(g). The joint state of both registers after modular expo-
nentiation indicates circuit performance; we find entangled
states that partially overlap with the expected states, Fig. 4,
indicating some environmental decoherence.

Process tomography fully characterizes circuit perform-
ance, yielding the y-matrix, a table of process measure-
ment outcomes and the coherences between them.
Measured and ideal y-matrices can be quantitatively com-
pared using the fidelity [6,27]; we measured process fidel-
ities of F, = 85%, 89% for the two-qubit gates of the
order-4 circuit. It is the easier of the two algorithms to
characterize since it consists of two gates acting on inde-

FIG. 4 (color online). Measured density matrices of the state of
both registers after modular exponentiation. (a) Order-2 circuit.
The ideal state is locally equivalent to a GHZ state: we find
Fguz =59 =4%. The state is partially mixed, S, =
62% * 4%, and entangled, violating the optimal GHZ entangle-
ment witness Wgpz = 1/2 — Fgpz = —9 = 4% [31]. (b) Order-
4 circuit. Measured fidelity with the ideal state, a tensor product
of two Bell-states, is F = 68 * 3%. The state is partially mixed,
S =52 = 4%, and entangled, with tangles of the component
Bell-States of 41 = 5% and 33 * 5%. Real parts shown, imagi-
nary parts are, respectively, less than 7% and 4%. The fidelity of
the four-qubit state (b) is higher than the three-qubit state (a),
chiefly because the latter requires nonclassical interference of
photons from independent sources, which suffer higher distin-
guishability, lowering gate performance [28,32,33].
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FIG. 5 (color online). Measured function-register probabilities
after modular exponentiation, conditioned on logical measure-
ment of the argument-register M,. There is a high correlation
between the registers: (a) Order-2 circuit, {Py;, Pjo} = {83 *
4%, 59 = 5%}; (b) Order-4 circuit, {Pyy, Po1, Pio, P11} = {87 =
3%, 84 = 4%, 82 * 5%, 67 * 6%}.

pendent qubit pairs. Consequently, by assuming that only
these gates induce error, the order-4 circuit process fidelity
is simply the product of the individual gate fidelities [30],
Fbede = pbdpoe = 80%. Clearly, this is significantly less
than the algorithm success rate of 99.7%. The order-2 cir-
cuit is harder to characterize, requiring at least 4096 mea-
surements, infeasible with our count rates. Decomposing
the three-qubit gate into a pair of two-qubit gates yields
process fidelities ¥, = 78%, 90% (reflecting differing in-
terferences of independent and dependent photons). There
is no simple relation between individual cz gate perfor-
mances and that of the three-qubit gate. However, a bound
can be obtained by chaining the gate errors, F, = 20%
[29]. This is not useful, c.f. the fidelity between an ideal cz
and doing nothing at all of ', = 25% (The bound only be-
comes practical as ', — 1). For larger circuits, full tomo-
graphic characterization becomes exponentially impracti-
cal. The order-finding routine registers contain k = n + m
qubits: state and process tomography of a k-qubit system
require at least 2% and 2* measurements, respectively.

An alternative is to gauge circuit performance via logical
correlations between the registers. Modular exponentiation
produces the entangled state 32! [x)|y) where y is re-
spectively C*modN and log-[ C*modN] for partial and full
compilation. For a correctly functioning circuit, measuring
the argument in the state x projects the function into y—
requiring at most 2 measurements to check. Figure 5
shows there is a clear correlation between the argument
and function registers, 59 to 83% and 67 to 87% for the
order-2 and order-4 circuits, respectively. Again, these
indicative values of circuit operation are significantly less
than the algorithm success rates.

We have experimentally implemented every stage of a
small-scale quantum algorithm. Our experiments demon-
strate the feasibility of executing complex, multiple-gate
quantum circuits involving coherent multiqubit superposi-
tions of data registers. We present two different implemen-
tations of the order-finding routine at the heart of Shor’s
algorithm, characterizing the algorithmic and circuit per-
formances. Order-finding routines are a specific case of
phase-estimation routines, which in turn underpin a wide
variety of quantum algorithms, such as those in quantum
chemistry [30]. Besides providing a proof of the use of

quantum entanglement for arithmetic calculations, this
work points to a number of interesting avenues for future
research—in particular, the advantages of tailoring algo-
rithm design to specific physical architectures, and the
urgent need for efficient diagnostic methods of large quan-
tum information circuits.
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Note added in proof.—By better spectral filtering, we
improved the GHZ state to F =67 *3%, S; = 58 = 3%,
and Wggz = —17 * 3%.
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