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We report an experimental demonstration of a complied version of Shor’s algorithm using four photonic
qubits. We choose the simplest instance of this algorithm, that is, factorization of N = 15 in the case that
the period r = 2 and exploit a simplified linear optical network to coherently implement the quantum
circuits of the modular exponential execution and semiclassical quantum Fourier transformation. During
this computation, genuine multiparticle entanglement is observed which well supports its quantum nature.
This experiment represents an essential step toward full realization of Shor’s algorithm and scalable linear

optics quantum computation.
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Shor’s algorithm [1,2] for factoring large numbers is
arguably the most prominent quantum algorithm to date.
It provides a way of factorizing large integers in polyno-
mial time using a quantum computer, a task for which no
efficient classical method is known. Such a capacity would
be able to break widely used cryptographic codes, such as
the RSA public key system [3,4]. Experimental realization
of Shor’s algorithm has been a central goal in quantum
information science. Owing to its high experimental de-
mands, however, this algorithm has so far only been dem-
onstrated in a nuclear magnetic resonance (NMR)
experiment [5]. Since the NMR experiments cannot pre-
pare pure quantum states and exhibits no entanglement
during computation, concerns have arisen on its quantum
nature [6]. In particular, it has been proved that the pres-
ence of entanglement is a necessary condition for quantum
computational speedup over classical computation [6].

The approach of using photons to implement quantum
algorithms is appealing due to the long decoherence times
and precise single-qubit operations [7—9]. Along this line,
the Deutsch-Josza algorithm and Grover algorithm have
been realized (see, e.g., [10—14]). In this Letter, we use the
photonic qubits to demonstrate the easiest meaningful in-
stance of Shor’s algorithm, that is, factorization of N = 15
in the case that the period r = 2. A simplified linear optics
network is designed to implement the quantum circuit. We
have observed genuine multiparticle entanglement and
multipath interference during computation, which thus
for the first time prove the quantum nature of the imple-
mentation of Shor’s algorithm [6].

Suppose we wish to find a nontrivial prime factor of an
[-digit integer N. Even using the best known classical
algorithm, prime factorization takes exponentially many
operations, which quickly becomes intractable as [ in-
creases. Shor’s algorithm, in contrast, offers a new power-
ful way to solve this problem in only polynomial time
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[1,2]. The strategy for the quantum factoring of a compos-
ite number N = pg, with both p and ¢ being odd primes, is
as follows. First, we pick a random number a (0 < a < N)
with no factor in common with N. Then we quantum
compute the period r of the modular exponential function
(MEF): f(x) = a*modN, which is the smallest positive
satisfying a"modN = 1. From this period r, at least one
nontrivial factor of N is given by the greatest common
denominator (GCD) of a’/2 =1 and N with probability
greater than 1/2.

Shor’s algorithm provided an efficient quantum circuit
[see Fig. 1(a)] to find the period r. Generally, two registers
of qubits are used [1,15]: the first register with n =
2[log, N1 qubits and the second one with m = [log,N]
qubits. Applying Hadamard (H) transformations on the
first register which was initialized in the state |0)®", it
becomes 272321 |x), an equally weighted coherent
superposition of all n-qubit computational basis. Then,
the MEF unitarily implements a*modN on the second
register when the first register is in state |x), giving
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The highly entangled state Eq. (1) exhibits what Deutsch
called ‘“‘massive quantum parallelism” [15,16], as
although the execution has run for only once, it entangles
all the 2" input value x with the corresponding value of f(x)
in parallel. Next, the quantum Fourier transformation
(QFT) is applied on the first register, yielding
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where interference leads to peaks in the probability ampli-
tudes for terms |y) with y = ¢2"/r (for integer c). Thus, the
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FIG. 1 (color online). Quantum circuit for the order-finding
routine of Shor’s algorithm. (a) Outline of the quantum circuit.
(b) Quantum circuit for N =15 and a = 11. The MEF is
implemented by two CNOT gates, and the QFT is implemented
by Hadamard rotations and two-qubit conditional phase gates.
The gate-labeling scheme denotes the axis about which the
conditional rotation takes place and the angle of rotation.
(c) The simplified linear optics network using HWPs and
PBSs to implement the MEF circuit and the semiclassical
version of the QFT circuit. The double lines denote classical
information.

period r can be deduced with high probability [1]. The
QFT on 2" elements can be efficiently performed on a
quantum computer with O(n?) gates.

Implementations of this algorithm, even for factoriza-
tion of a small number, place a lot of challenging experi-
mental demands, e.g., coherent manipulations of multiple
qubits and creations of highly-entangled multiqubit regis-
ters. Here, we aim to demonstrate the simplest instance of
Shor’s algorithm, i.e., the factorization of 15. Quantum
networks for evaluating the MEF have been designed
which involve O(n®) operations [15,17]. Since a* =
a® 1. 2% g% the execution of MEF can be decom-
posed into a sequence of controlled multiplications. A
general purpose algorithm to factorize 15 would require
atleast n = 8, m = 4, thus, totaling 12 qubits [15]. Several
observations allow us to reduce the resources substantially
for the purpose of a proof-of-principle demonstration.
First, we choose to implement the algorithm with a =
11; this was identified in [5] as the “‘easy’ case. Since
a’mod15 = 1, MEF can be simplified to multiplications
controlled only by x,, which can be implemented by two
controlled-NOT (CNOT) gates [18]. A QFT then follows to
read out the period r. Such a circuit is shown in Fig. 1(b).
We note there are two qubits in the second register which
evolve trivially during computation and thus can be left
out.

To demonstrate the circuit of Fig. 1(b), we use single
photons as qubits, where |0) and |1) are encoded with the
photon’s horizontal (H) and vertical (V) polarization, re-
spectively. The difficulty in implementing this circuit lies
in the CNOT gates and conditional 7/2-phase shift gate.
Although such entangling gates are possible for photons in

principle using measurement-induced nonlinearity [7],
currently they are still experimentally expensive [9,19].
Here, we note that since the target qubits of the CNOT gates
are always fixed at |H), so the gate could be realized in an
easier and more efficient fashion. Such a CNOT gate uses
only a polarizing beam splitter (PBS) and a half-wave plate
(HWP), through which an arbitrary control qubit (a|H) +
BlV)) and the target qubit |H) evolve into «|H) H) +
BIV)|V) upon post-selection [20], that is, conditioned on
that there is one and only one photon out of each output
[see Fig. 1(c)]. Furthermore, the QFT circuit can also be
implemented with a more efficient method. It was observed
by Griffiths and Niu [21] that when immediately followed
by measurements, the fully coherent QFT can be replaced
by a semiclassical version that employs only single-qubit
rotations conditioned on measurement outcomes. This
eliminates the need for entangling gates and reduces the
numbers of gates quadratically. Thus, we finally arrive at
the simplified linear optics MEF and QFT network in
Fig. 1(c). We note despite of these simplifications, our
circuit suffices to demonstrate the underlying principles
of this algorithm.

Now we proceed with the experimental demonstration.
Our experimental setup is illustrated in Fig. 2, where a
pulsed ultraviolet laser passes through two B-barium bo-
rate (BBO) crystals to create two pairs of entangled photon
[22]. We use polarizers to disentangle the photons and
prepare them in the states |H); with i denoting the spatial
modes [see Fig. 1(c)]. The photons pass through the HWPs
and are superposed on the PBSs (see Fig. 2) to implement
the necessary single- and two-qubit gates. To ensure good
spatial and temporal overlap, the photons are spectrally
filtered (A Apwuw = 3.2 nm) and coupled by single-mode
fibers [23].

How could one experimentally verify a valid demon-
stration of Shor’s algorithm? First, let us see the theoreti-
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FIG. 2 (color online). Experimental setup. Femtosecond laser
pulses (394 nm, 120 fs, 76 MHz) pass through two BBO crystals
to produce two pairs of entangled photons with an average count
of 7.8 X 10* s~ . Fine adjustments of the delays between path 2,
3, 4 are made by translation stages Ad, and Ad,. We incorporate
in front of each PBS a compensator (Comp.) to counter the
additional phase shifts of the PBS. The final measurement results
are then read out using polarizers and single-photon detectors.
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cal predictions. After a = 1lis chosen, the first step
of this algorithm, the MEF should evolve as (1/2) X
53 [l mod1s) = (1/2)(10)[1) + [DI11) + [2)]1) +
[3)]11)). As we rewrite it in binary representation
(000001) + |[011011) + [100001) + |111011))/2, it shows
that a nontrivial Greenberger-Horne-Zeilinger (GHZ) [24]
entangled state 1) = (1/v2)(10),10)310)4 + [1),]1)s]1)4)
is created between the two registers. For Shor’s algorithm
as well as some others, multiqubit entanglement is a nec-
essary condition if the quantum algorithm is to offer an
exponential speedup over classical computation [6]. In our
experiment, as the photons pass through the MEF circuit,
we first observe the Hong-Ou-Mandel type interference
[25] of three photons in arms 2-3-4 [see Fig. 3(b)].
Then, after fixing the delays at the zero positions, we
expect to determine the fidelity of the three-photon GHZ
state and detect its genuine entanglement. The fidelity is
judged by the overlap of the experimentally produced state
with the ideal one: F, = (/| pey,|th). Here, p can be de-
composed as p=|yXl=1/2[(|{HHHYXHHH|+
[VVVXVVV])+(1/4)(XXX — XYY - YXY —YYX)] [26],
where X and Y denote Pauli matrices o, and o, which
correspond to measurements in basis |+/—) = (1/+/2) X
(H)£1v)) and |R/L) = (1/v2)(|H) £ilV)), respec-
tively. Figure 3(c) and 3(d) shows the measurement results,
which yield F, = 0.74 = 0.02. It is proved that a fidelity
above 50% is sufficient to show genuine entanglement of
the GHZ states [26]. Thus, the presence of genuine entan-
glement created between the two registers of our quantum
computer is confirmed by 12 standard deviations.

Now we move to the next step—execution of the semi-
classical QFT, as illustrated in Fig. 1(c). We measure all
possible correlations in the state of the qubit 1 and 2, which
is the simplest way to simulate feedforward as used in
Ref. [13]. In the case, photon 1 is measured in the state
|1), an additional quarter wave plate is inserted in the arm 2
to implement the /2 rotation. Each measurement is
flagged by a fourfold event where all four detectors fire
simultaneously. The experimental results are shown in
Fig. 4. With a probability of ~50%, the output is in |00)
corresponding to a failure. Another ~50% probability
yields [10), which determines the period r = 22/2 = 2;
thus, the GCD(11%/2 + 1, 15) = 3, 5, giving a successful
factorization. To further quantitatively evaluate the per-
formance, we use the squared statistical overlap [27] of
experimental data with the ideal values, which is defined as
Yy = (Eizom;/ze}/z)z, where my, and e, are the measured
and expected output-state probabilities of the state |y),
respectively. From the data in Fig. 4, we find y = 0.99 =
0.02, indicating a near perfect experimental accuracy.

It is noticeable that the performance of the algorithm is
considerably better than the quality of the entanglement
created between the registers. The imperfections of our
experiment mainly arise from high-order photon emissions
and partial distinguishability of independent photons [28],
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FIG. 3 (color online). Principle of three-photon interference
and data of genuine triplet entanglement. (a) Hong-Ou-Mandel
type [25] interference of three photons. Three |+) polarized
photons are directed to two PBSs from three spatial modes. As
the PBSs transmit A and reflect V polarizations, a coincidence
detection of three outputs can only originate from either the case
that all photons are transmitted or all reflected. (b) Three-photon
interference as a function of the temporal delay. Outside the
coherent regime, the terms |H),|H);|H), and |V),|V);|V), are
distinguishable. At the zero delay, an optimal superposition
of |H)|H);|H)y and |V),|V);|V)s is achieved; thus, the
[+),]+);1+)4 events show a maximal enhancement while the
[+),]+)31—)4 events show a dip. The raw visibility is 0.75 *
0.03, which after subtraction of the contribution of the double
pair emission can be improved to 0.88 = 0.05, indicating good
spatial and temporal overlap have been achieved. This is, to our
knowledge, the first observation of Hong-Ou-Mandel type inter-
ference which involves three photons from three different paths.
(c) The multiphoton detection probabilities in the H/V mea-
surement basis. (d) Measured expectation value of the observ-
ables XXX, XYY, YXY, and YYX. The error bars denote 1
standard deviation, deduced from propagated Poissonian count-
ing statistics of the raw detection events.

which cause undesired mixtures in the GHZ state and
degrade its fidelity. However, for the execution of the
algorithm, such mixtures happen to have the same effect
as the desired mixtures which could have been resulted
from the ideal circuit anyway (after the qubits 2, 3, and 4
are entangled in the GHZ state, the qubit 2 is in a complete
mixture tracing out of the qubit 3 and 4).

Some further remarks are warranted here. In this experi-
ment, we have used the simplified optical two-qubit PBS
gates which are probabilistic and upon post-selection [20];
thus, scalability is not directly implied in the present work.
However, they can in principle be improved to be determi-
nistic using the scheme by Knill ef al. [7] given more
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FIG. 4. Experimental result of the output-state probabilities
after application of the QFT on the first register. Each measure-
ment takes 120 s and yields a maximum 270 fourfold coinci-
dence counts for the |00) projection.

photon source and complicated linear optics network.
Furthermore, an alternative approach, known as the
cluster-state model [29,30] provides a more efficient real-
ization of scalable photonic quantum computation
[8,13,31]. In this model, universal quantum computation
is achieved by single-qubit measurements on a prepared
highly entangled cluster state.

Above, we described a number of steps by which our
MEF circuit was brought to a simpler form. While these
steps may seem at first sight ad hoc, in fact they are an
example of a general simplification method in the cluster-
state model. It has been shown that measurements of Pauli
operator observables on cluster states transform the state
via a set of simple (and computationally efficient) rules
[30] to a cluster state with a different graphical description.
Classical preprocessing can thus produce a cluster-state
implementation with a smaller number of qubits, which,
as demonstrated here, can simplify the experimental real-
ization. Thus, our approach can be seen as a hybrid of
cluster-state based and circuit-based models of quantum
computation, adopting the most suitable model for the
implementation of MEF and QFT circuits, respectively.

In summary, we have completed a proof-of-principle
demonstration of a complied version of Shor’s algorithm
using photonic qubits. Genuine multiparticle entanglement
is observed during computation, which proves its unam-
biguous quantum nature. Our experiment presents an im-
portant step toward full realization of Shor’s algorithm and
scalable linear optics quantum computation. To factorize
larger numbers in the future, significant challenges ahead
may include coherent manipulations of more qubits, con-
structions of complex multiqubit gates, and quantum error
correction [32].
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