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We demonstrate that two key theoretical objects used widely in computational neuroscience, the phase-
resetting curve (PRC) from dynamics and the spike triggered average (STA) from statistical analysis, are
closely related when neurons fire in a nearly regular manner and the stimulus is sufficiently small. We
prove that the STA due to injected noisy current is proportional to the derivative of the PRC. We compare
these analytic results with numerical calculations for the Hodgkin-Huxley neuron and we apply the
method to neurons in the olfactory bulb of mice. This observation allows us to relate the stimulus-response
properties of a neuron to its dynamics, bridging the gap between dynamical and information theoretic
approaches to understanding brain computations and facilitating the interpretation of changes in channels
and other cellular properties as influencing the representation of stimuli.
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Dynamical systems models like the Hodgkin-Huxley
model of the squid giant axon are very effective at repli-
cating the firing properties of individual neurons. Such
models have been extremely useful tools for understanding
the mechanisms of neural excitability and for simulating
neural circuits. However, these models have been less
successful in aiding the understanding of what neurons
compute. Given a model that perfectly describes the be-
havior of a neuron or a network, we are in most cases still at
a loss to say what computation this neuron or circuit is
performing. Rather, the natural concepts and objects of the
theory of computation (e.g., stimuli, features, coding) seem
only distantly related to those of the theory of dynamical
systems (e.g., differential equations and attractors). Here
we relate two mathematical objects central to these two
approaches: the phase-resetting curve (PRC) and the spike
triggered average (STA). We start by introducing these
objects and then prove that the STA is proportional to the
derivative of the PRC in the weak stimulus limit. We show
that this approach allows us to efficiently and accurately
compute the STA from the PRC and vice versa, in the case
of numerical simulations as well as in the case of real
neurons. The ability to compute these functions from
each other allows us to make some progress in relating
dynamics of neurons to their ability to code features.

The PRC describes how the spiking of a regularly firing
neuron is altered by incoming input, that is, how the time of
the next spike is shifted as a function of the stimulus time
relative to the previous spike: A(r) = [T — T(r)]/K where
T is the natural period and 7(¢) is the time of the spike
given a stimulus at time ¢ after the last spike. The constant
K is the magnitude of the stimulus, e.g., 1 mV since the
PRC depends on the amplitude of the perturbation. [1,2]
show that for small stimuli, x(f), any stable limit cycle
oscillator can be reduced to a scalar model for its phase, 6:
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where § € [0, T) and A(6) is the PRC. For neurons, the
stimulus has dimensions of millivolts per millisecond. We
take @ = 0 to be the time of spiking. The PRC is valid for
neurons which are repetitively firing (that is, on a stable
limit cycle), but the concept of the PRC can be applied
even when the neurons are quite noisy, often permitting a
PRC to be measured experimentally from neurons in vitro
[3,4]. A(#) is readily computed for differential equation
models, and can also be computed for neural models either
via direct perturbation [5-7] or indirectly [3,4].
Equation (1) shows that for a regularly firing neuron, the
PRC provides, an answer to the question of “how will a
stimulus influence when the next spike will come?”’

A contrasting approach to understanding neural compu-
tation has focused on neural coding, by which we mean
determining what features of stimuli are represented by
single spikes and spike trains [8]. Such analysis of the
stimulus dependence of spike trains often includes the
calculation of the STA, which is related to the reverse
correlation [8,9]. The STA is defined as the average stimu-
lus with a given prior statistics preceding an action poten-
tial in a neuron. For our purposes, by stimulus we refer to
the current injected into a neuron (divided by the capaci-
tance). In other experimental protocols, the stimulus may
be a sensory stimulus presented to an animal while a
neuron is recorded. If x(¢) is the stimulus

STA (1) = (x(7; — 1)), ()

where the average is taken over all spike times, 7;. In the
present context, the STA is an answer to the question of
“on average, what temporal features of the stimulus lead to
spiking?”’
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Theory.—To derive the main result which applies when
the stimulus is small, we write x(t) = o £(f), where o is the
magnitude of the signal and £(¢) is a zero-mean stationary
stochastic process with unit variance. (Note that for white
noise applied to the voltage equation for a neuron model,
o2 has dimensions of mV?/msec.) We will use the small-
ness of ¢ to estimate the time of a spike in Eq. (1) and from
this obtain the STA from (2). With 6(0) = 0 as the initial
condition (we assume the neuron has just spiked) we write

0(r) = 0y(t) + o0,(2) + ...

(as, for example, [10]) and substitute into (1). Clearly
0(t) = t, and from this we find that

o A()é(),

which upon integration yields
t
00 = [ M@t

We want to determine the time 7 at which the oscillator
spikes again, that is 8(7) = T. As with 6, 7 depends on o,
so we write 7 = 79 + o7 t+ ..., and find 7) = T and

T = fT A(s)é&(s)ds.
0
Thus, we find that to order o,
r=T— a’fT A(s)E(s)ds. 3)
0

Substituting Eq. (3) into (2) and taking expectations, we
get

STA(1) = a<§<T - fo " A(s)£(s)ds — ;>>
T
— (E(T — D) — oM (T — 1) ﬁ) A(s)E(s)ds) + ...
— _o? ﬁ T AT = DEs)ds + ...
- —O'Z[TA(S)C'(T— = S)ds+ ...
0

=—aszA’(s)C(T—t—s)ds+..., 4)
0

where C(r) = (£(r)£(0)) is the auto correlation of the
stimulus. To get the fourth line, we note that the expected
value of £(7) is zero; to get the last line, we have integrated
by parts. Dropping the higher-order terms and assuming
the stimulus is white noise, we obtain the main result

STA (1) = —g?A/(—1), 5)

where we use the T periodicity of A(z) to drop the T. This
result shows that the dynamics of a neuron, as captured by
the PRC, can be used to predict the STA and conversely,
given the STA, we can estimate the PRC of a repetitively
firing neuron. Furthermore, (4) is valid for any small, zero-
mean, stationary, stochastic stimulus.

Two key issues arise in this analysis. First, we must
translate the periodic PRC to the generally aperiodic
STA. This conversion is most straightforward when neuron
is firing at a nearly constant rate and the PRC is well
defined. While the STA is in principle aperiodic, in reality
it is only sensible to define the STA over the time interval
prior to a spike in which there are no other spikes. Thus the
time over which both the STA and the PRC can be clearly
defined is the interval between spikes, i.e., the average
period. Second, we must note that because the PRC is
the integral of the STA, it is defined only up to an additive
constant term. However, if we assume that the PRC van-
ishes at + = 0, T (as is common in neurons), then we can
determine the integration constant.

Examples.—To test the theory, we compute the STA for
the Hodgkin-Huxley (HH) equations and then use Eq. (5)
to compute the PRC subject to the constraints that it
vanishes at 1 = 0 and at the average period, t = T. We
drive the four variable biophysical Hodgkin-Huxley model
with a constant bias current (/ = 10 wA/cm?) to make it
fire at 70 Hz, inject noise and compute the spike triggered
average. (7000 spikes were used.) We then numerically
integrate the STA and time-reverse it to reconstruct an
approximate PRC. We compute the exact PRC using the
method in [11] and compare the two methods for two
different amplitudes of noise. Figure 1 shows that in both
the low and high noise case, the PRCs calculated from the
STAs are almost identical to the actual PRC. Later (see
Fig. 3), we will systematically quantify the dependence of
the reconstruction on the statistics of the spike trains for
both the HH and phase models.

We next tested this transformation on real neurons. We
performed whole cell recordings from olfactory bulb mitral
cells. We injected these cells with dc current to cause them
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FIG. 1. Estimation of the PRC from the STA for the Hodgkin-
Huxley model. (a) STA for two levels of noise (gray: o> =
0.0625 mV?/msec; black: o> = 1.0 mV?/msec) (b) PRCs re-
constructed from the STA (thick line, true PRC; thin lines,
reconstructed PRCs).
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to fire repetitively at 50 = 6 Hz, added noisy current (with
an amplitude 10% of the dc) and recorded spike times over
intervals of 2—2.5 seconds, repeated 100—120 times. From
the recorded spike trains we first eliminated the initial
period (250-600 ms) of spike frequency accommodation
and then calculated the STA. We calculated the PRC from
the STA as per Eq. (5). For comparison, we also calculated
the PRC using a method based on injection of aperiodic
perturbing pulses [4]. Figure 2 shows the estimated PRC
obtained from these two methods from the an olfactory
bulb mitral cell. In the PRCs estimated by both methods,
there is a clear negative region after the spike followed by a
larger positive region, consistent with our earlier estima-
tion of the PRC for olfactory bulb mitral cells. We also
were interested in the fact that the STA-based method was
possible despite the fact that cells were not firing in a
precisely oscillatory manner. We measured the standard
deviation of the interspike intervals in our recordings and
found it to be approximately 10% of the firing rate. Thus
our method is robust for at least this level of variation in the
firing rate. We also applied these methods to recordings of
neurons in the mouse somatosensory cortex (data not
shown) with similar results.

To explore further how this relationship between the
PRC and the STA depends on the regularity of the periodic
firing, we drive both the HH model and simple phase
models of the form of (1) with larger and larger ampli-
tude noise to make their firing more irregular. We exam-
ined the effects of noise on phase models with two com-
monly used PRCs [A(z) =sint, Figure 3(al); A(r)=

4
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FIG. 2. Estimation of the PRC of a neuron recorded in vitro.
Graph shows the STA (black) and the PRC estimated using two
different methods from recordings of an olfactory bulb mitral
cell. The light gray line shows an estimate from the method
described previously [4]. The dark gray line shows average PRC
for the same cell calculated from the STA, as described above.
(Note the STA has been plotted in time rescaled by 27/7, the
mean period.)

1 —cost, Fig. 3(a2)]. Calculating the STA and the PRC
for these higher noise simulations (after correcting for the
change in average firing rate) resulted in PRCs that less and
less closely resembled the actual PRC for these models
although the general shape of the PRC was somewhat
maintained [Figs. 3(al) and 3(a2)]. We injected increas-
ingly larger noise (o = 0.25 — 16) into the HH model.
While the shape of the PRC is degraded, the zero crossing
is preserved remarkably well. We quantified this degrada-
tion in the quality of the estimated PRC by calculating the
correlation coefficient (R) between the actual PRC and the
PRC estimated from the STA and plotted this against the
CV of the ISI distribution. We observed that for both phase
oscillator models the estimate provided a good approxima-
tion (R > 0.75) of the PRC up to CV = 0.4. For CVs above
0.4, the correlation between the actual and estimated PRC
declined rapidly for both models. For the HH model, it was
difficult (even with the large noise applied) to increase the
CV beyond about 0.3, when in the oscillatory mode. Trying
larger noise values, led to numerical difficulties. We re-
mark that in Fig. 3, we have normalized the magnitude of
the PRC to a maximum of 1 and that the un-normalized
reconstructed PRCs for the HH model had amplitudes that
were smaller at large noise values.

Discussion.—Relating neural dynamics to neural coding
has been termed a grand challenge for neuroscience and we
believe that our work describes an important step towards
relating these two subjects, albeit for a restricted set of
stimuli and neural operating range. Strengthening this
connection will provide valuable means of relating the
wealth of data on biophysical properties of neurons (as
captured in dynamical systems models of neuronal prop-
erties) to questions about the properties of stimuli that are
being computed by neurons. There are two limitations to
our approach. However, our methods can still be applied to
many situations. First, the PRC, as useful as it is, has limits
to its applicability; specifically, in this context, it is defined
only for nearly periodically firing neurons where only the
timing of spikes (and not the rate) are altered. Nonetheless,
neurons in many brain networks are active spontaneously
and the strength of any one input is weak. Thus, the
assumption that inputs modulate the timing of spikes rather
than adding more spikes may hold. For example, [12]
demonstrated that realistic synaptic conductances in the
aplysia satisfy the mathematical criteria of “weak cou-
pling” in the sense that the notion of phase still makes
sense.

Second, traditional STA analysis refers to sensory stim-
uli rather than directly injected neurons. However, a num-
ber of authors have used current injections to understand
the ““neural code.” The authors of [13] were among the first
to try to extract statistical information such as the STA and
the spike triggered covariance (STC) from a biophysical
model for a neuron. Using simulations of the Hodgkin-
Huxley equations, they compute both the STA and the STC
in a situation where the stimulus is sufficiently strong to
elicit spikes. They show that there are important features of
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FIG. 3 (color online). Effect of irregu-
lar firing on the estimate of the PRC
from the STA for phase models and the
HH model. Results of simulations of the
phase model with A(r) = sint (al) and
A(t) =1 —cost (a2) with increasing
noise amplitude from 0.2 (red)-2.8
(black) in steps of 0.3 (in the order of
colors in the rainbow). For both PRCs
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increasing noise amplitude causes an in-
crease in firing rate. In both cases low
noise levels (orange traces) produce most
precise estimates of the PRCs. (a3) Re-
construction of the HH PRC with in-
creasing noise values (o shown in figure)
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the stimulus encoded in the STC which are not evident
in the STA. The calculations in section II could be ex-
tended to incorporate higher-order effects and thus re-
late the STC to other aspects of the PRC [14]. [13] also
consider the effects of the amplitude of the stimulus on
the STA; such effects would be reflected in changing the
shape of the reconstructed PRC [as in Fig. 3(a3)]. While
our theory is linear (with respect to the effects of the
stimulus), it is known that the shape of the PRC is also
affected by stimuli which are sufficiently large [2], so
that some of the shape effects in Fig. 3 may be due to
pushing the simulations beyond the linear range. More
recently, [15] derived the STA for the integrate-and-
fire model and produced formulas in the limit of small
noise. [16] characterized the spike triggered average volt-
age (a related quantity which requires intracellular record-
ing of the membrane voltage fluctuations) for several
different models and related it to the underlying dynamics
while [17] studied the relationship between the STA and
STC to subthreshold dynamics. [18] computes the PSTH
and STA of a general class of spike-response models, thus
providing some insight into the relationships between dy-
namics of spiking and the neural code. This work is the
closest to ours in its generality. They apply their results to
the data in [19]. Our methods, while in a more restricted
situation (regularly firing) are very general in that they
apply to any model of an experimental system for which
a PRC is defined. In particular, PRCs encode dynamic
information about subthreshold behavior [3,20], which is
not possible in spike-response models. The PRC can be
directly computed from any biophysical model for periodic
neuronal firing.
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