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We systematically study the growth kinetics and the critical surface dynamics of cell monolayers by a
class of computationally efficient cellular automaton models avoiding lattice artifacts. Our numerically
derived front velocity relationship indicates the limitations of the Fisher-Kolmogorov-Petrovskii-
Piskounov equation for tumor growth simulations. The critical surface dynamics corresponds to the
Kardar-Parisi-Zhang universality class, which disagrees with the interpretation by Bru et al. of their
experimental observations as generic molecular-beam-epitaxy-like growth, questioning their conjecture
that a successful therapy should lead away from molecular beam epitaxy.

DOI: 10.1103/PhysRevLett.99.248101 PACS numbers: 87.18.Hf, 47.54.�r, 68.35.Ct, 89.75.Da

Model simulations of tumor growth and therapy have
attracted wide interest [1] [2]. An important issue to which
models can contribute is the classification of the tumor
growth pattern by generic mechanisms at the level of the
individual cell actions (migration, division, etc.). These
actions subsume the effect of the molecular inter- and
intracellular regulation. The models can serve to identify
those cell activities whose modification would result in a
maximal inhibition of multicellular growth and invasion,
and thereby point to possible molecular drug targets. Bru
et al. [3] analyzed the growth kinetics and critical surface
dynamics of normal and malignant cell lines in vitro and
in vivo. They quantified the dynamics of their surface by
three critical exponents used to classify crystal growth
phenomena into universality classes [4]. They found a
generic linear growth phase of in vitro growing cell lines
for large cell populations and a molecular-beam-epitaxy
(MBE)-like dynamics of the population surface both
in vitro and in vivo. Based on these findings they propose
that a successful anticancer therapy should modify the
universality class away from MBE mainly by changing
cell migration [5].

In this Letter we analyze cell populations growing in
d � 2 dimensions by a class of cellular automaton (CA)
growth models on an irregular lattice by extensive com-
puter simulations. CA cell growth models enjoy wide
interest [6] since they permit to represent each cell indi-
vidually at moderate computational expense. In our models
cells can divide, push neighbor cells, and migrate which we
believe is the minimum number of actions necessary to
capture the growth behavior of cell populations in d � 2.
By using the irregular lattice we ensure isotropy and ho-
mogeneity of the growth pattern avoiding artifacts from
periodic lattices [7]. Also the expansion speed differs from
results on periodic lattices. We systematically analyze our
growth models with respect to the hopping rate, prolifera-
tion depth, and dispersion of the cell cycle time distribution
and numerically derive a relation for the expansion veloc-
ity. It agrees with the traveling wave velocity of the Fisher-

Kolmogorov-Petrovskii-Piskounov (FKPP) equation if
growth is dominated by free cell migration [8]. The models
reproduce the monolayer expansion kinetics experimen-
tally found by Bru [3]. As in the Eden model [9] the critical
surface growth dynamics suggests a Kadar-Parisi-Zhang
(KPZ)-like [10] behavior over a wide range of parameters
and for varying cell migration mechanisms including that
proposed by Bru to explain the occurrence of MBE [3],
supporting the critical comment in Ref. [11] on Bru’s
conjecture [3].

Our models are based upon the following rules:
[R1] Lattice generation.—Starting from a regular square

lattice with spacing l, an irregular lattice ri is generated by
Delauney triangulation. A biological cell is represented as
shown in Fig. 1(a) (white).

[R2] Exclusion principle.—Each lattice site can be oc-
cupied by at most one single cell.

[R3] Proliferation depth.—A cell can divide if and only
if there is at least one free neighbor site within a circle of
radius �L around the cell [Fig. 1(a), green].

[R4] Cycle time.—The cell cycle time �0 is Erlang dis-
tributed: f��0���m��m�0�m�1 expf��m�

0g=�m�1�!. Here,
m is a shape parameter and �m � m such that h�0i���1.

[R5] Cell migration.—We consider four alternatives.
R5(i) A cell moves with rate � to a free neighbor site,
irrespectively of the number of neighbor cells before and
after its move. This mimics the case of no cell-cell ad-
hesion. R5(ii) Cells move with rate � if by this move the
cell is not isolated. R5(iii) Cells move with a rate
� expf��E=FTg with �E � E�t� �t� � E�t�, where �t
is the time step, E�t� is the total interaction energy of the
multicellular configuration, FT � 10�16 J is a ’’meta-
bolic’’ energy [12], �E=FT �O�1�–O�10� [2]. This indu-
ces migration towards locations with a larger number of
neighbor cells as suggested in Ref. [3]. R5(iv) A migrating
cell is able to push at most �L̂ cells aside with rate �̂.

By [R1] we generate an irregular lattice with a symmet-
ric cell area distribution sharply peaked around its average
l2 [Fig. 1(b)]. [R3] takes into regard that the growth speed
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of cell populations is usually incompatible with the as-
sumption that only cells at the border are able to divide (as
in the Eden model [13], see [2] ). Therefore, we assume
that a dividing cell is able to trigger the migration of at
most �L� 1 neighbor cells into the direction of minimum
mechanical stress [Fig. 1(a)]. If a cell divides, the local cell
configuration is shifted and rearranged along the line that
connects the dividing cell with the closest free lattice site
within a circle of radius �L such that the latter is now
occupied; then the original position of the mother cell and
its cleared neighbor site are occupied by the two daughter
cells [Fig. 1(a)]. This algorithm mimics a realistic re-
arrangement process that may occur from active cell mi-
gration as a response to a mechanical stimulus;
cf. Ref. [14]. [R4] considers that experiments indicate a
�-like distribution of the cell cycle controlled by cell cycle
check points [15]. Isolated cells perform a random-walk-
like motion (e.g., [16] ). We consider different migration
rules R5(i)–(iv) to comprise a class of potential models
with biologically realistic behavior.

The model parameters are the average cell cycle time �
and its distribution f��0� controlled by the parameter m,
the migration rate �, the proliferation depth �L, and,
in case of an energy-activated migration rule, the en-
ergy E. Programmed cell death (apoptosis) can easily be
integrated [17] but is omitted here. Rules [R1]–[R5] can
be formalized by the master equation @tp�Z; t� �P
Z0WZ0!Zp�Z

0; t� �WZ!Z0p�Z; t�. Here p�Z; t� denotes
the multivariate probability to find the cells in configura-

tion Z at time t and WZ0!Z denotes the transition rate from
configuration Z0 to configuration Z. A configuration Z �
f. . . ; xi�1; xi; xi�1; . . .g consists of local variables xi �
f0; 1g with xi � 0 if lattice site i is empty, and xi � 1 if it
is occupied by a cell. For the simulation we use the
Gillespie algorithm [18]; i.e., the time step of the event-
based simulation is a random number given by �t �
��1=WZ0 � ln�1� ��. Here, � is a random number equidis-
tributed in �0; 1�, WZ0 �

P
~Z�Z�WZ0!Z is the sum of all

possible events which may occur at time t. In ~Z�Z� we
assume that the rate at which a cell changes its state by a
hop, a progress in the cell cycle, or a division is indepen-
dent of the number of accessible states as long as at least
one state, that is, one free adjacent lattice site in case of a
hop and one free site within a circle of radius �L in case of
a division, is accessible. This may be justified by noting
that cells—in contrast to physical particles—are able to
sense their environment and therefore the direction into
which they can move.

We analyze the growth kinetics by the number of
cells N�t� and the radius of gyration Rgyr�t� �����������������������������������������������

1
N

PN
i�1�ri�t� � R0�t�	2

q
. R0 �

1
N

PN
i�1 ri denotes the cen-

ter of mass. For a compact circular cell aggregate (in d �
2), Rgyr is related to the mean aggregate radius �R�t� �
1

2�

R
2�
0 R�’; t�d’ (polar angle ’) by �R � Rgyr

���
2
p

.
To interpret the rules and parameters of the CA model in

terms of mechanisms we compare it with the stochastic
single-cell-based off-lattice growth model in Ref. [2]
(Fig. 2). In this model cell motion contains an active
random component and a component triggered by me-
chanical forces between cells and between cells and the
substrate [19]. A cell grows as long as thereby no cell is
deformed or compressed too much, and it divides when it
has doubled its size. As illustrated in Fig. 2 the lattice
model is able to capture the behavior of the off-lattice
model and the experimental findings in Refs. [3]. �L
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FIG. 2 (color online). (a) Mean radius �R of the cell aggregate
vs time t. Full circles: experiment for C6 rat astrocyte glioma
cells [3]. Other symbols: CA simulations for different migration
rules, R5(i) (a): �L � 9, � � 0, R5(i) (b): �L � 1, � � 25,
R5(ii): �L � 8, � � 25, R5(iii) �L � 9, � � 25, �E=FT �
E0 � nEB with EB � 10, n neighbors, E0 � 5, R5(iv): �L �
�L̂ � 6, �̂ � 1. (b) Cell cycle time distribution f��0� for off-
lattice model and CA growth model in comparison with Erlang
distribution. (m � 60, � � 19 h, l � 10 �m [2]. �L and � in
units of l and ��1.)

FIG. 1 (color online). (a) Construction of the CA lattice: one
point (black, green) is placed in every square of a square lattice
at a random position ri. A Voronoi tessellation is constructed
from these points such that a cell i consists of all points in space
that are closer to point ri than to any rk with k � i. The shape of
a biological cell (white) is identified with the corresponding
Voronoi polygon (blue lines). Polygons that share a common
edge are defined as neighboring and connected by red lines
(Delauney triangulation). (b) Probability density distribution of
the cell area for the CA lattice in (a) (brown) and for a random
initial distribution of points (red). (c) Cell cluster morphology
for m � 104, �L � l on (i) the CA lattice in (a), (ii) square,
(iii) hexagonal lattice, (iv) lattice with Moore neighborhood
(nearest neighbors along the axes and the diagonals), (v) off-
lattice cluster [2,20].
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controls the effective thickness of the proliferative rim; in
the off-lattice model it depends on the mechanisms that
control the proliferation by contact inhibition, on the ma-
terial properties of the cell (the Young modulus, the
Poisson number, etc.), and on the ability of a cells to
move in response to a mechanical stimulus [2].

At large m the populations’ border becomes smoother
and its shape reflects the symmetry of the underlying lattice
[Fig. 1(c) (ii)–(iv)], known as noise reduction [7]. Such
lattice-induced asymmetries could significantly disturb the
analysis of the surface growth dynamics in circular geome-
tries. We have chosen an irregular lattice, in which such
artifacts do not occur [Fig. 1(a) and 1(c)(i)]. Figure 3 shows
a systematic study of the growth kinetics for free hopping
[Rule R5(i)]. All quantities are plotted in multiples of the
reference time scale � and length scale l. Initially, the cell
population size grows exponentially fast with N�t� �
N�0� exp�t=�eff�, where ��1

eff � �2
1=m � 1�m��1 [20]. The

duration of the initial phase increases with �L and �.
The growth law for the radius depends on �. If � � 0,
the initial expansion of the radius is exponentially fast,
too. If �> 0, cells initially detach from the main clus-
ter and the radius grows diffusively, with �R �

���
2
p
Rgyr /�������������������������������

A��� 1=�eff�t
p

, where A 
 1:2 is a lattice-dependent fit
constant [Fig. 3(a)]. For t=� � 2, Rgyr / t [Fig. 3(a)]. This
regime disappears for N�0� � 1 (see [20] ). As soon as
cells in the interior of the aggregate are incapable of further
division the exponential growth crosses over to a linear
expansion phase. Figure 3 shows v2 versus ��L�2 (b), �
(c), andm for (d) forN � 105 cells. v�m;�;�L� � d �R=dt.
As t! 1,

 v2 
 fB2���L0��L�	2=�2
eff ��=�eff�g; (1)

B 
 1:4 [lines in Fig. 3(b) and 3(c)]. We find �L0��L� 

1� 0:6��L� 1� [21]. The model can explain the experi-
mentally observed velocities for different cell lines,
1–11 �m=h [3]. For �L=�eff 


��������������
�=�eff

p
, v2 / �=�eff as

for the FKPP equation [8].
Next, to determine the universality class we deter-

mine the roughness exponent � and the dynamic expo-
nent z from the dynamic structure function S�k; t� �
hR�k; t�R��k; t�i as in Ref. [3]. R�k; t� is the Fourier trans-
form of the local radius R�s; t� and h. . .i denotes the aver-
age over different realizations of the growth process. Here
s is the arclength calculated from the mean distance �R of
the population boundary from the center of mass times the
polar angle ’ [3]. The Fourier transform includes the
arclength interval �s � �R�’ (�’ fixed) to include the
boundary dilation as stressed in Ref. [22]. The third ex-
ponent, the growth exponent �, can be obtained from the
scaling relation � � �=z or from the interface roughness
w� t� [4]. For self-affine surfaces in absence of any
critical length scale the dynamic structure function has
the Family-Vicsek scaling form [23]:

 S�k; t� � k��2��1�~s�kt1=z� (2)

 ~s�u � kt1=z� �
�

const: if u� 1;
u��2��1� if u
 1:

(3)

At u � 1 a crossover occurs. For u� 1 curves measured
at different times collapse onto a single line; at u
 1 they
split. We have calculated S�k; t� for rules R5(i) and � � 0,
R5(ii) and R5(iii) (Fig. 4). The final cell population size
was of O�105� cells, the typical size of the cell popula-
tions in Ref. [3]. All these results suggest KPZ-like dy-
namics with � � 1=2, z � 3=2, and � � 1=3 rather than
the MBE universality class, i.e., critical exponents � �
3=2, z � 4, and � � 3=8 inferred in [3]. The parameter
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FIG. 3 (color online). (a) Y � R2
gyr=��� 1=�eff� vs t for m �

1, �L � 1 and different values for �. (b)–(d) Growth in the
linear expansion regime (N � 105). (b) Square of expansion
velocity, v2, vs square of the proliferation zone, �L2 (4: � �
0,�: � � 10, �: � � 20; m � 1). (c) v2 vs � (4: �L � 1,�:
�L � 3, �: �L � 6, �: �L � 10; m � 1). (d) v vs m (�L �
1, � � 0). The lines are fits using Eq. (1). (Time and length in
units of � and l.)

FIG. 4 (color online). (a) Dynamic structure function S�k; t� vs
k for [R5(i)], �L � 0, � � 0, m � 1. Inset: scaling function
~s � S�k; t�k2��1 vs kt1=z (� � 0:5, z � 3=2). (b) S�k; t� vs k for
four alternative parameter sets: (A)4: m � 5 (�L � 0, � � 0),
(B)�: �L � 6 (m � 1,� � 0), (C) �: R5(ii)� � 100 (m � 1,
�L � 0), (D) �: R5(iii) �E=FT as in Fig. 2(a) (m � 1, �L � 0)
[24]. The dashed lines are guides to the eye showing � � 0:5.
(Time and length in units of � and l.)
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range of � 2 �0; 100� captures most cell lines studied in
Ref. [3] (for l � 10 �m, � � 24 h, � � 100 corresponds
to a diffusion constant of D� 10�11 cm2=s).

In conclusion, we have analyzed the expansion kinetics
and critical surface dynamics of cell aggregates in d � 2
by extensive computer simulations within a class of CA
models avoiding symmetry artifacts from regular lattices.
Our models differ by their migration rule R5(i)–(iv). For
R5(i) cell adhesion is absent or negligible hence many
isolated cells occur. For R5(ii) cells at the surface migrate
randomly, for R5(iii) into local cavities; both are detectable
by tracking of cells under the microscope [3]. For R5(iv),
migrating interior cells push neighbor cells forward lead-
ing to a correlated movement of cells. The model parame-
ters may be inferred either from macroscopic observations:
�eff from the exponential growth of N�t�, �L0 from Eq. (1),
�L from �L0��L�, and, for R5(i), � from Y�t� [Fig. 3(a)];
or microscopically: � from tracking migrating isolated
cells [16], �L, �L0, �, and m by cell cycle phase markers
[15], E from adhesion experiments [19] and apoptosis [17]
by TUNEL assay. The model rules and parameters may
differ for each cell line and growth environment. If they are
known, a classification of cell lines with regard to their
growth behavior or predictions of spatial patterns at later
times are feasible. Since some cell lines differ by mutations
only, mutation effects on multicellular growth may be
quantified [25]. In Ref. [26] the shape and velocity v of
the front of glioma in vivo was calculated using the trav-
eling wave velocity relation of the FKPP equation.
However, Eq. (1) shows that this relation does not apply
if �L is too large. Moreover, for a given v we found the
front steepness increases with �L (not shown); if each
parameter in Eq. (1) is known, both v and the front profile
can be predicted. For some cancer cell lines, interior cells
leave the monolayer and pile up. This can be captured by
cell moves out of the layer; the effect should be as for
apoptosis [17] so that the results in this Letter still apply for
the basal layer. The critical surface dynamics found in our
simulations does not comply with the interpretation of
experimental observations by Bru et al. [3] even for the
migration mechanism they suggested [R5(iii)] [27]. We
propose to reanalyze the corresponding experiments and
track the paths of marked cells.
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