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A spin-polarized current with the polarization direction perpendicular to a disk in the vortex ground
state will result in renormalization of the effective damping of excitations on this state. As the current is
increased to a threshold current Ic the effective damping will be zero and the lowest threshold current
corresponds to the vortex gyrotropic mode. For larger values of the current the excitation is a nonlinear
gyrotropic mode having nonsmall amplitudes and larger frequency than the linear mode. This effect
occurs for any mode of the vortex-state disk, and the value of Ic is proportional to the mode frequency.
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The injection of a spin current in magnetic nanostruc-
tures can result in interesting new effects having potential
applications in spintronics. For example, it was first theo-
retically predicted by Slonczewski [1] and Berger [2] that a
dc spin-polarized current (SPC) in a uniformly magnetized
thin film renormalizes the spin wave damping and above a
critical value of the spin current Ic the damping can be-
come negative with generation of spin waves. For a more
complete theoretical description of the nature of the modes
excited by a spin-polarized current it is necessary to take
nonlinear effects into account. In the thin film it was shown
[3] that nonlinearity from the four-wave interaction will
limit the growth of the excitation. Moreover, it was pre-
dicted [4] that the stable structure will be a self-localized
spin wave bullet. In nanomagnets such as thin disks the
ground state structure is vortexlike providing an ideal
system to study spin-transfer effects in confined nonuni-
form states. For these systems it was recently shown [5]
that a spin-polarized current with the polarization in the
vortex plane results in a displacement of the vortex core
owing to the lower symmetry introduced by the current.
More recently for the simple model of the easy-plane
magnet it was theoretically predicted that the vortex core
polarity can be switched [6] by a spin current perpendicular
to the vortex plane; however, some of the important mag-
netostatic effects were neglected. This particular situation
has direct application to information storage since the
vortex core polarization as well as the vortex chirality
can potentially each store 1 bit of information. In this
Letter the nonlinear dynamic effects from a dc spin-
polarized current in a vortex-state disk are investigated
including dominant magnetostatic effects from both sur-
face and volume magnetostatic charges.

Since the dynamic effects from a spin-polarized current
are theoretically investigated here, we begin with a short
introduction to the spectrum of vortex-state disks. The
lowest frequency (sub-gigahertz) excitation corresponds
to gyrotropic oscillation of the vortex core as a result of
an initial displacement induced by an in-plane magnetic
pulse [7,8]. There are also higher frequency (gigahertz)

modes excited [9–11] and their structure depends on the
symmetry of the initial pulse. In particular, the radially
symmetric mode can be excited by an out-of-plane pulse.
To determine how a current will affect these excitations,
the Landau-Lifshitz equations are analyzed including ef-
fects from the spin-polarized current and dissipation.

For the particular case when the polarization direction p̂
is perpendicular to the vortex plane, and the cylinder
thickness L is small compared to the radius R, the magne-
tization can be assumed to be uniform in the perpendicular
(z direction) and the Slonczewski form [1] for the spin
torque is applicable,

 ~� � �IMs� ~m� � ~m� p̂��; (1)

where I is the current and � � "g�B=2eMsLA, where " is
the spin-polarization efficiency, e is the magnitude of the
electric charge, g is the Landé factor, �B is the Bohr
magneton, and A � �R2

c is the area of the circular nano-
contact, where Rc � R in the following. Also this is a
function of the unit magnetization vector ~m � ~M=Ms,
where Ms is the saturation magnetization and can be ex-
pressed ( ~m � sin� cos’r̂� sin� sin’�̂� cos�ẑ) in terms
of polar and azimuthal angles, � and ’, respectively.

Taking into account dissipation and the Slonczewski
torque, the equations of motion for the magnetization
have the following form
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for the particular case when ẑ is the polarization direction.
Here Q is the dissipation function

 Q �
	GMs

2�

Z
� _�2 � _’2sin2��d~r; (4)

which results in Gilbert damping. Here � � g�B=@ is the
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gyromagnetic ratio and 	G is the phenomenological
Gilbert damping parameter.

First it is shown that there will be a critical current where
damping will be balanced by the Slonczewski torque. This
is easily done through an energy balance estimate, by
multiplication of (2) by _’, multiplication of (3) by _�, and
integration over the disk volume to get the time derivative
of the energy
 

dW
dt
� �

	GLMs

�

Z
� _�2 � _’2sin2��d2r

�
�IMsL
�

Z
_�sin2�d2r; (5)

where the thin disk approximation is used resulting in
integration over the disk area. As expected, dissipation
will result in energy loss, but the second term can be
positive so there can be a critical current Ic where the
energy dissipation is zero, and for I > Ic the mode be-
comes unstable and its amplitude will increase.

To proceed further for an arbitrary mode, the usual
ansatz [9] � � �0 � #, ’ � �� �=2��= sin�0, where
�0 describes the vortex profile, #m;n�r; �; t� � fm;n�r��
cos�m��!t�, and �m;n�r; �; t� � gm;n�r� sin�m��!t�
determines the magnon modes with an azimuthal charac-
teristic number m and radial characteristic number n. Here
r; � are polar coordinates in a dot plane, the forms of
functions fm;n�r�, gm;n�r� are well known [11,12]. Then
the condition dW=dt � 0, which is the definition of the
critical current Ic, gives

 	G!
Z
�f2 � g2�rdr � �Ic

Z
fg cos�0rdr: (6)

To find the value of Ic, we need definite forms of the
functions fm;n�r�, gm;n�r�, but some general remarks can
be made. First, it is remarked that for small 	G 	 1 the
mode damping decrement from Gilbert dissipation can be
written as � � Q=�E, where �E is the mode energy
relative to the vortex ground state, calculated using the
particular mode with 	G � 0. This simple calculation
shows that the expression for � contains the same combi-
nations of integrals as in (6), and the threshold value can be
expressed through the values of � and the mode frequency
!,

 Ic �
�

�!
: (7)

Therefore, in the following the critical current is propor-
tional to the ratio �=!. The values of! for different modes
are well known, and � for some modes is determined
experimentally [13]. The lowest value of �=! corresponds
to vortex gyrotropic mode [14], and one expects that as the
current increases the smallest critical current will corre-
spond to amplification of the sub-gigahertz gyrotropic
mode. As we will see below, the value can be as small as
a few tens of microamps, whereas, for other modes (in-

cluding the m � 0 mode corresponding to core size oscil-
lations, considered in [6]) our calculations will give higher
values in the milliamp range.

Since the gyrotropic mode has the lowest value of Ic, let
us concentrate on quantitative analysis of this mode, de-
termining the current dependence of the mode amplitude.
The gyrotropic mode in the nonlinear regime can by mod-
eled by the Thiele equation [15], and the easiest way to
derive this equation including the Slonczewski torque is
multiplication of (2) by r’, (3) by r�, add and integrate
over the disk volume. Then use of the vortex ansatz, ~m �
~m0� ~r� ~X�, where ~m0� ~r� is the magnetization of the static

vortex at the origin, gives the Thiele equation

 

~G�
d ~X
dt
�
@W

@ ~X
� 


d ~X
dt
� ~FSPC � 0; (8)

where ~G � �ẑ2�MsL=� is the gyrovector [15,16], the
viscosity coefficient is

 
 �
	GMsL
�

Z
��r��2 � sin2��r’�2�d2r; (9)

and the SPC force is

 

~F SPC � �I
MsL
�

Z
r’sin2�d2x: (10)

In the following the various terms in (8) are evaluated in the
lowest significant approximations. The expression for the
energy W is the most complicated since nonlinearity will
be included, but the basic result is determination of terms
second and fourth order in X. From previous work the
precession frequency can be obtained from the first two
terms of (8) using V � !X and the quadratic dependence
of the magnetostatic energy W � �X2=2 to get simply
! � �G. Also from (8), the critical current can be obtained
by equating the damping force to the SPC force, but to
accomplish this it is next necessary to evaluate the integrals
in (8) and calculate the magnetostatic energy for the dis-
placed vortex.

For the evaluation of the viscosity coefficient we use the
vortex ansatz with ~X � 0, choose the origin to be the
vortex core center, and evaluate

 
 �
	G�MsL

�

Z ��d�
dr

�
2
�

sin2�

r2

�
rdr: (11)

The viscosity coefficient is evaluated in the main logarith-
mic approximation on the small parameter, l0=R, where

l0 �
�������������������
A=4�M2

s

p
is the exchange length and A is the ex-

change constant. For permalloy l0 
 5 nm, and the vortex
core size is the order of three or four exchange lengths. To
evaluate (11) is it necessary to assume a functional form for
the core such as a Gaussian or cut off the integration at the
vortex core, then to a first approximation this is 
 �
�	G�Ms=�� ln�R=l0�. Using Eq. (8), the value of 
 can
be connected with damping and frequency of gyrotropic
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mode, �=! � 
=G. It is remarked that � depends linearly
on frequency and depends on the system size through the
log function as was also found by Guslienko [14].

When the centered ( ~X � 0) vortex structure is used to
evaluate (10) one obtains zero so it is necessary to assume a
form for the displaced vortex structure. Here it is sufficient
to assume that �! �=2 since contributions from the out-
of-plane core are negligible. Previous work indicates that
boundary conditions are approximately fixed at the disk
edge resulting in no net edge magnetostatic charge [7,8].
For this reason it is useful to use the vortex-image vortex
ansatz

 ’�x; y� � tan�1

�
y

x� a

�
� tan�1

�
y

x� R2=a

�
�
�
2
; (12)

where R is the disk radius and a is the displacement of the
vortex center on the x axis, and the image vortex is outside
the disk at R2=a also on the x axis. The more general ansatz
[8] for an arbitrary displacement is slightly more compli-
cated, but this simpler form is sufficient. Using (12) it is
possible to evaluate (10) exactly to obtain

 

~F SPC � 2�L�IMs�ẑ� ~X� (13)

for an arbitrary displacement. Thus, for circular vortex
motion with constant frequency the SPC force is antipar-
allel to the friction force, and both are perpendicular to
vortex displacement. In contrast, both the gyroforce and
restoring force, for any W � W�j ~Xj�, have a radial
direction. Then, the condition !a � dW=da gives the
frequency for amplitude a � j ~Xj, and the condition
2�L�IMs � !
 determines the value of current resulting
in this motion.

The remaining force in (8) is from the magnetostatic
potential originating from the volume magnetostatic
charge density, r � ~M, which will be obtained using the
magnetization expressed by (12). This is the critical and
most difficult part of this calculation since nonlinearities
become important owing to the displacement of the vortex
core. For the region outside the core the normalized mag-
netization is given by mx � Ms cos’ and my � Ms sin’
with mz � 0. Next these components of the magnetization
are expanded in series on a=R,

 mx � mx0 �mx1
a
R
�mx2

a2

R2 � � � � : (14)

For the consideration of nonlinear effects, third and fourth
order terms should be used. For evaluation of integrals it is
convenient to use a cylindrical (r; �; z) coordinate system.
We present here some of the lowest terms only, mx0 �
� sin�, my0 � cos�, mx1 � �b�R

2 � r2�=2Rrc sin2�,
mx1 � �b�R

2 � r2�=Rrcsin2�, and my2 � �2r
2R2��1�r4 �

2r2R2 � 3R4�sin2� cos�. The term mx2 has a structure
similar to my2, and other terms are easily obtained but
are too long to include here.

Since the exchange contribution to the energy is
proportional to �r ~m�2, this can be neglected and the
main contribution to the energy comes from the volume
magnetostatic charge given by

 WMS �
M2
SL
2

Z
�mx@x��my@y��d

2 ~r; (15)

including the partial derivative of the magnetostatic poten-
tial given by

 @x� � �L
Z �x� x0�r � ~m�x0; y0�dx0dy0
� ~r� ~r0�2

�����������������������������������
� ~r� ~r0�2 � L2=4

p ; (16)

where � ~r� ~r�2 � �x� x0�2 � �y� y0�2, with a similar ex-
pression for @y�.

Next use (14)–(16) to obtain the second and fourth order
expressions for the magnetostatic energy as a power series
in a=R. It is remarked that all of the odd contributions will
be zero because of the form of the ansatz (12). Moreover,
the integral over � is trivial for all orders, but before this
integral is done it is convenient to make the substitution
	 � �0 � �. Then the second order contribution can be
expressed in dimensionless form by the substitutions r �
R� and r0 � R�0 as a universal potential integral,

 W�2�MS � �M2
s
L2a2

2R
���;  � L=R; (17)

 ��� �
Z ��� �02���0 cos	� �� cos	

�
�����������������
�� 2
p �0d�0d�;

where the upper limits are � � �0 � 1, and to shorten
equations the notation � � ���; �0; 	� � �2 � �02 �
2��0 cos	 is used. The integral over 	 can be easily done
for the thin disk approximation where the L2=4R2 contri-
bution in the denominator is neglected giving combina-
tions of elliptic integrals. The remaining radial integrals
over � and �0 are done numerically. Similar but more
complicated expressions appear for the fourth order term
W�4�MS finally giving the magnetostatic energy

 WMS � �M2
s
L2

R2

�
2:83Ra2 � 60:53

a4

R

�
: (18)

The restoring force from (18) can be used with the other
forces in (8) to get the vector Thiele equation
 �

4�!�!M
L
R

�
2:83� 121

a2

R2

��
~er

� 4�
�
�I � 	G! ln

R
l0

�
~e� � 0: (19)

In the absence of dissipation and current in the linear
approximation the first two terms will give the frequency
of the gyrotropic mode,

 ! � 0:225!M�L=R�; (20)
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where !M � 4��Ms, which is about 30 GHz for permal-
loy. The dependence on L=R is the same as found by a
different method, with a slight difference in the numerical
coefficient [17]. The third term will give the nonlinear
frequency shift in a form

 !�a� � !
�

1� 42:76
�
a
R

�
2
�
: (21)

The critical current is estimated using the last two terms in
(19) with a � 0

 Ic �
	G!
�

ln
�
R
l0

�
(22)

coinciding with the simple estimate based on Eqs. (6) and
(7).

To estimate the critical current for a typical disk
(R � 200 nm and L � 20 nm) for permalloy (Ms � 8�
105 A=m) one obtains Ic 
 20 �A. Larger values of the
current I > Ic will result in precession motion of the vortex
with amplitude a. The dependence of a on the current is
determined using the nonlinear term in (21)

 

a
R
� 0:153

�������������
I � Ic
Ic

s
(23)

demonstrating a ‘‘soft’’ nonhysteretic regime of excitation
for this mode.

In conclusion, small values of a spin-polarized current
can counteract dissipation and result in gyrotropic vortex
motion. Since the polarization direction is perpendicular to
the vortex plane, this current cannot excite the initial
motion, but any small fluctuation of the vortex position
or weak and shore in-plane field pulse can produce the
initial vortex displacement, which will be amplified by the
current. This effect can be observed experimentally by

imaging techniques such as time-resolved Kerr
microscopy.
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