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The crossover between a free magnetic moment phase and a Kondo phase in low-dimensional
disordered metals with dilute magnetic impurities is studied. We perform a finite-size scaling analysis
of the distribution of the Kondo temperature obtained from a numerical renormalization group calculation
of the local magnetic susceptibility for a fixed disorder realization and from the solution of the self-
consistent Nagaoka-Suhl equation. We find a sizable fraction of free (unscreened) magnetic moments
when the exchange coupling falls below a critical value Jc. Between the free moment phase due to
Anderson localization and the Kondo-screened phase we find a phase where free moments occur due to the
appearance of random local pseudogaps at the Fermi energy whose width and power scale with the elastic
scattering rate 1=�.
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The Kondo problem is of central importance for under-
standing low-temperature anomalies in low-dimensional
disordered metals [1–7] such as the saturation of the de-
phasing rate [8] and the non-Fermi-liquid behavior of
certain magnetic alloys [1,9]. For a clean metal, the screen-
ing of a spin-1=2 magnetic impurity is governed by a single
energy scale, the Kondo temperature TK. Thermodynamic
observables and transport properties obey universal func-
tions which scale with TK. Thus, in a metal where non-
magnetic disorder is also present, two fundamental
questions naturally arise: (i) Is the TK modified by non-
magnetic disorder? (ii) Is the one-parameter scaling be-
havior still valid? It is well known [1,3,5] that magnetic
moments can remain unscreened when conduction elec-
trons are localized. However, in weakly disordered two-
dimensional systems, the localization length is macro-
scopically large and is not expected to influence the screen-
ing of magnetic moments for experimentally relevant
values of exchange coupling J. Another way of quenching
of the Kondo effect is the existence of a global pseudogap
at the Fermi energy EF, namely, ��E� � �E� EF�

�, where
�> 0 [10]. In clean metals, the pseudogap quenches the
Kondo screening when J falls below a critical value Jc���.
So far, only a few values of � have been realized experi-
mentally: � � 1 in graphene and in d-wave superconduc-
tors and � � 2 in p-wave superconductors. In this Letter
we examine the quantum phase diagram of magnetic mo-
ments diluted in two-dimensional disordered metals using
a modified version of the numerical renormalization group
(NRG) method. We find a free moment phase which we
attribute to the random occurrence of local pseudogaps.
The existence of free moments is confirmed directly with
the NRG by the Curie-like behavior of the local magnetic
susceptibility at low temperatures at particular sites for a
given disorder realization. Finite-size scaling is performed
to demonstrate the robustness of our finding. Furthermore,
the distribution of TKs obtained from the NRG is found to

agree well with earlier results based on the solution of the
Nagaoka-Suhl equation [3].

We consider the Kondo Hamiltonian of a magnetic
impurity diluted in a disordered metal,
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Here, En are eigenenergies of noninteracting disordered
electrons, described by the Anderson tight-binding model,
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X
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XN
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Vic
y
i�ci�; (2)

with band width D, nearest-neighbor hopping amplitude t,
and random site potentials Vi, drawn from a flat box
distribution of width W centered at zero. We consider
square lattices of length L with N � L2 sites and periodic
boundary conditions. The exchange coupling matrix ele-
ments are then given by Jnn0 � J 	n�r� n0 �r�, with  n�r�
being the amplitude of the single-electron eigenfunction at
the position r of the magnetic impurity. Energies are given
in units of t.

Finite-size scaling.—We obtain all eigenenergies and
eigenfunctions of HV by using state-of-the-art numerical
diagonalization techniques for a large set of realizations of
the disorder V [11]. The TK is then obtained from the
solution of the one-loop-Nagaoka-Suhl equation (NSE)
[12],

 1 �
J

2N

XN
n�1

L2j n�r�j2

En � EF
tanh

�
En � EF

2TK

�
: (3)

EF is located between energy levels. Numerical solution of
Eq. (3) yields a distribution of TK with strong deviations
from Gaussian behavior even for weak disorder [3].
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Figure 1 shows for W � 3 that a double-peak structure
found previously [3] persists as the lattice size is increased
from 900 to 4900 sites. This structure evolves into a power-
law divergence in the strong-disorder limit [3]. In order to
verify that these features are not an artifact of the one-loop
approximation, we perform a comparative analysis with
the nonperturbative NRG method for different system sizes
and disorder strengths for a given disorder realization.

NRG for disordered systems.—In order to apply the
NRG method to disordered systems, we use as a basis set
the eigenfunctions and eigenenergies of the tight-binding
model, Eq. (2), as obtained by the numerical exact diago-
nalization. We perform the Wilson logarithmic discretiza-
tion of the conduction band and replace the interval of
eigenenergies between �D=2���n�1 and �D=2���n, n �
0; 1; 2; . . . ; Nc, by one energy level equal to the average of
eigenenergies in this interval. Nc is determined by the con-
dition that in the interval [���Nc�1D=2, ��Nc�1D=2],
there is no energy level. Solving Eq. (3) for the logarithmi-
cally discretized spectrum at particular sites with the NRG,
we found that the TK saturates for values of the NRG
discretization parameter below � � 1:5. Thus, fixing this
value for � is sufficient for a statistical analysis of the TK,
as we confirmed by repeating the statistical analysis with
� � 1:3 for one sample, finding almost undistinguishable
results with a margin of less than one per cent. Next, by the
tridiagonalization procedure, we numerically map this
model onto a discrete Wilson chain. Then, we use an
iterative diagonalization, keeping 1500 states after each
iteration [13]. We calculate the local magnetic susceptibil-
ity �loc�T�, which is proportional to the local correlation
function of the impurity spin, by differentiating the mag-
netic moment of the impurity with respect to a magnetic
field that acts only at the impurity [14]. The local suscep-
tibility is found to have a smooth temperature dependence
(see Fig. 3) which can be used to define TK: T�loc�T�
crosses over from the free spin value 1=4 to a decay linear
in T as the temperature is lowered below the TK. For a
clean flat band system, �loc�T� coincides with the impurity
susceptibility �imp, which is obtained as the difference
between the susceptibility of the electronic system with
and without the impurity. Wilson defined the TK as the

crossover temperature where TK�imp�TK� � 0:07 [13,15].
For disordered systems, we find that T�imp�T� can strongly
deviate from the scaling curve of the clean system [16]. It
turns out, however, that this is an artifact of the definition
of �imp: The susceptibility of the conduction electrons
fluctuates widely and can result in negative values of
�imp [17]. In Fig. 2, we show the distribution of TKs
when TK using Wilson’s criterion TK�loc�TK� � 0:07.
The data were extracted from a single sample of size L �
70 using two distinct sets of disorder and exchange cou-
pling amplitudes: W � 2, J � 0:3D [Fig. 2(a)], and W �
3, J � 0:35D [Fig. 2(b)]. For comparison, we plot the
distribution of TK obtained from the solution of the one-
loop NSE, where we accounted for the known higher-loop
correction by rescaling TK with 0:7

����������
J=D

p
. The agreement

is remarkable and demonstrates that the double-peak struc-
ture is not an artifact of the one-loop approximation. In
Fig. 3(a), we plot the local impurity spin susceptibility,
multiplied by temperature T, for the site with maximal TK

for a given realization of the disorder. In order to check that
the modified version of the NRG is well suited for disor-
dered systems, we also plot in Fig. 3(a) results obtained
with the continuous-time quantum Monte Carlo method
(CTQMC) [18] (dots) for the same site using the complete
set of eigenstates of HV . For temperatures close to TK both
methods agree well. The small deviations seen at larger
temperatures can be attributed to the fact that the average
of the wave function amplitudes in each Wilson discretiza-
tion interval results in stronger suppression of fluctuations
at higher energies. A full statistical analysis with the
CTQMC method will be presented elsewhere. We note
that the local density of states (LDOS), shown in the inset,
has most of its weight in the lower half of the band, close to
the Fermi energy. In contrast, in Fig. 3(b) we show the
impurity susceptibility times T for a site where the mag-
netic impurity remains unscreened for J=D< 0:35. Note
that T�loc changes only weakly with temperature. For T 

� it approaches its free value 1=4 (not shown). The corre-

FIG. 1 (color online). Distribution of TKs obtained from the
NSE [Eq. (3)] for electrons in square lattices with disorder
strength W � 3. Data were obtained using all lattice sites and
1 (L � 50, 70), 5 (L � 40), and 100 (L � 30) samples, with
J=D � 0:35.

FIG. 2 (color online). The distribution of TKs obtained with the
NRG for lattice size L � 70. (a) W � 2, J=D � 0:3, scaled with
TK0
� 0:57De�D=J (TK in 1-loop approximation for a flat band

of width D). (b) W � 3, J=D � 0:35 for one realization of the
disorder potential. For comparison we plot the distribution
obtained from NSE (higher-loop corrections are accounted for
by rescaling TK with 0:7

����������
J=D

p
). The error bars denote the

statistical error.
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sponding LDOS (inset) shows that weight is shifted to-
wards the upper half of the band, away from the Fermi
energy (which is set at quarter filling), and that there is a
minimum in the LDOS at the Fermi energy, resembling a
local pseudogap.

Free moment phase.—Next, we use the NRG to analyze
the impurity sites where the renormalization of the mag-
netic susceptibility remains too small to define a finite TK.
On such sites a magnetic moment remains free down to the
lowest temperatures, the spin susceptibility �loc diverges,
and T�loc�T� approaches a finite value. We employed this
criterion to identify free magnetic moments and compare
in Fig. 4 their fraction with that derived from the condition
that Eq. (3) has no finite TK solution. We see that the
fraction of free moments obtained from NSE is smaller
than the one from the NRG. This can be attributed to the
fact that higher-loop corrections tend to lower TK. Thus,
the criterion that the NSE has no solution gives a lower
bound for the fraction of free magnetic moments. This
corresponds to TK ! 0 in Eq. (3). Therefore, free moments
exist when the effective LDOS, as defined by

 �eff �
1

2N

XN
n�1

L2j n�r�j2

j En � EF j
; (4)

is smaller than the inverse exchange coupling 1=J. For a
fixed disorder realization this yields a lower bound for the
critical exchange coupling Jc below which the magnetic
impurity remains free. For clean systems with flat bands
�eff diverges logarithmically with the number of states N.
Then, Jc=D� 1= lnN. Since TK �D exp��D=J�, the con-
dition for free moments is �> cTK (c� 1 depends on
EF). Since � vanishes in the thermodynamic limit, there
are no free moments for any finite J in a clean metal. Can
one conclude the same when nonmagnetic disorder is
present? The answer is no for two reasons. First, in dis-
ordered systems of dimension d � 2, all eigenstates are
localized in the absence of spin-orbit interaction or a strong
magnetic field, with a finite local gap of order �c �
1=���d� at the Fermi energy (� average density of states,
� average localization length). Therefore, there are with
certainty free moments when �c � TK, or, equivalently,
J
 JA

c �D= lnNc, where Nc � D=�c. In weakly disor-
dered two-dimensional electron systems, ��g� �
g exp��g� in the absence of magnetic fields (g � EF�
and at quarter filling g � 96=��W2�). Equation (4) yields,

 JA
c � Dfln�2��W�2� � Cg�1; (5)

where C 
 0:58. This expression provides a lower bound
for Jc, since both the localization length and the local
effective DOS are widely distributed. In Fig. 5, we show
the distribution of �eff for moderate disorder. Remarkably,
the point where the distribution drops sharply to zero,
�effmin

, hardly depends on L. In the inset of Fig. 5, we
plot Jc � 1=�effmin

as function of disorder for various

FIG. 4 (color online). Fraction of free moments as a function
of exchange coupling J obtained (a) from the condition that the
NSE has no solution and (b) from temperature dependence of
local spin susceptibility calculated with the NRG for disorder
W � 2, as compared with the result from NSE. The fraction of
free moments in a clean sample (step functions) are plotted for
comparison. The lines are guides to the eye.

FIG. 5 (color online). Distribution of �eff for W � 2 and
lattice sizes L. Inset: Quantum phase diagram in (J, W) plane.
Data points: Jc � 1=�effmin

as function of W, obtained numeri-
cally for several L. Dashed line: guide to the eye. Full line:
Critical exchange coupling due to Anderson localization, JA

c ,
Eq. (5). For J > Jc, all magnetic moments are screened (Kondo).
For J < JA

c , magnetic moments remain free due to Anderson
localization (Anderson free moments). For JA

c < J < Jc, mag-
netic moments remain free due to local pseudogaps.

FIG. 3. Local spin susceptibility as function of temperature T
for exchange coupling J=D � 0:35, disorder amplitude W � 2,
and lattice size L � 70, obtained with NRG (lines) and CTQMC
(dots) methods [17,18]. At a site (a) where TK is maximal,
(b) where the magnetic impurity remains free. Arrows indicate
TK0
�J=D�. Insets: The absolute square of eigenfunction ampli-

tudes as a function of energy E (E � 0 denotes the Fermi
energy). The mark indicates the mean level spacing �.
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values of L, together with JA
c �W� obtained from Eq. (5).

This quantum phase diagram in the (J, W) plane shows a
free magnetic moment phase due to Anderson localization
for J < JA

c and a Kondo-screened phase for J > Jc�W�. For
intermediate couplings, JA

c < J < Jc�W�, we also find free
magnetic moments for all lattice sizes considered. It is well
known that a free moment phase exists when there is a
pseudogap around the Fermi energy [10]. Indeed, as seen
in Fig. 3(b), there is a dip in the LDOS at sites where the
magnetic moment remains unscreened. In weakly disor-
dered metals, the LDOS is correlated over a macroscopic
energy interval of order of the elastic scattering rate 1=�
[19]. Although these correlations are only of order 1=g and
the LDOS can fluctuate in energy, they can cause dips in
the LDOS within a range of order 1=�. From the numerical
results for Jc�W� (inset of Fig. 5) and from the fact that a
pseudogap with an exponent � yields Jc � �D, we infer
the exponent of the local pseudogaps in 2D metals. The
critical exchange coupling increases with disorder strength
W as Jc �W �

��������������������������
�@=�96	F��

p
. For Fe impurities in thin

Ag films, where hTKi � 4 K [20] and J=D� 0:1, the para-
magnetic moment phase extends to 	F� 
 25. Thus, for
diffusion constants De < 25 cm2=s free magnetic mo-
ments contribute to the dephasing at T 
 hTKi [3]. The
anomalous dephasing reported in Ref. [20] in Ag wires
where De > 100 cm2=s may indicate the lowering of the
exchange coupling J=D below 0.05 at interstitial sites or at
the surface with a corresponding shift of the free moment
quantum phase boundary.

In summary, a nonperturbative finite-size scaling of
Kondo impurities in two-dimensional disordered electron
systems is performed. Between the free moment phase due
to Anderson localization and the Kondo-screened phase,
we find a phase where free moments occur due to random
local pseudogaps at the Fermi energy. The pseudogap
width and exponent scale with the elastic scattering rate
1=�. Experimentally, a local probe such as STM could be
used to detect this pseudogap free moment phase directly.
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