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We show that the wave functions form caustics in circular graphene p-n junctions which in the
framework of geometrical optics can be interpreted with a negative refractive index.
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The possibility of a negative refractive index in nature
was first analyzed theoretically by Veselago [1] and was
followed by other important works [2]. Evidence for such
left-handed metamaterials has been demonstrated by mi-
crowave experiments [3].

Another prominent candidate for such materials might
be graphene, as proposed recently by Cheianov et al. [4].
They studied the transmission of electrons through a plane
p-n junction of graphene and showed that the optics of
electron flow, in the framework of geometrical optics, can
be described by optical refraction with negative refractive
index. The graphene itself provides many other peculiar
electronic properties owing to the close similarity between
the dispersion relation of two-dimensional massless Dirac
fermions and the low energy electronic spectrum of gra-
phene (for a review, see [5] ). However, an easy way of
tuning the refractive index by gate potential may open up
further research directions in graphene physics. For ex-
ample, graphene might be utilized to fabricate properly
designed electronic lens.

One of the interesting subjects in geometrical optics is
the caustics. A caustic is an envelope of a family of rays at
which the density of rays is singular. The caustics have
been extensively studied in the past (for a review see, e.g.,
the work by Berry and Upstill [6] ). As in Ref. [4] for plane
p-n junction, we show theoretically that in circular p-n
junction of graphene the caustics can also arise in the wave
function pattern of electrons, and the curves of caustics can
be calculated using the well-known Snell’s law with nega-
tive refractive index.

To this end, we consider the scattering of ballistic inci-
dent electrons in graphene shown in Fig. 1. To demonstrate
the formation of caustics in circular p-n junctions, we used
a simple gate potential V�r� � V0��R� r�, where � de-
notes the Heaviside function. The assumption of such a
sharp potential is valid provided that �F � d, where �F is
the Fermi wavelength outside the junction and d is the
characteristic length scale in which the scattering potential
varies. Moreover, to prevent intervalley scattering it is
necessary that d� a, where a is the lattice constant of
graphene [4,7]. The negative refractive index is realized by
p-n junctions of graphene in which the energy E of the
incoming electrons at the n side is positive (belonging to
the conduction band), while at the p side of the junction the
potential V0 is chosen such that E< V0; therefore, the

electrons belong to the valence band. Here we focus on
this case (0<E< V0) but its generalization to arbitrary
values of E is straightforward. Note that various properties
of elastic electron scattering in graphene has already been
studied [8]. Here we investigate the wave function pattern
inside the junction. Pronounced formation of the caustics
can only be seen in the quasiclassical limit, i.e., in case of
R� �F, but no such condition is assumed in our exact
calculation of the wave functions.

The Hamiltonian for the above described scattering
problem for energies E close to the Dirac point may be
written as

 H � H0 � V�r�1 � c� � p� V�r�1: (1)

Here c is the Fermi velocity, p � �i@@=@r, while � �
��x;�y� and 1 are the Pauli matrices and the unit matrix
acting in isospin space.

Consider the elastic scattering of incoming electrons
governed by the Hamiltonian H. The scattering of the
incident electron can be calculated by the generalization
of the well-known partial wave method (see, e.g., [9] ). The
wave function (in polar coordinates) describing the scat-
tering of a single incoming partial wave h�2�j (defined
below) outside the scattering region (r > R) can be written
in terms of the cylindrical wave eigenfunctions of the
Hamiltonian H with energy E> 0:

 ��out�
j � h�2�j � Sjh

�1�
j ; (2a)

where

 h�d�j �r; ’� �
H�d�j��1=2��koutr�e�i’=2

iH�d�j��1=2��koutr�ei’=2

0
@

1
Aeij’; (2b)
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FIG. 1 (color online). Incident plane wave of electron in single
layer graphene is scattered by a rotational symmetric potential
V�r� (circular region).
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while inside the scattering region (r < R) the wave func-
tion reads

 ��in�j � Aj�j; (3a)

where

 �j�r; ’� �
Jj��1=2��kinr�e�i’=2

�iJj��1=2��kinr�e
i’=2

 !
eij’: (3b)

Here the pseudo-angular momentum j 2 J �

f. . . ;� 3
2 ;�

1
2 ;

1
2 ;

3
2 ; . . .g, h�1�j (h�2�j ) is an outgoing (incom-

ing) cylindrical wave function corresponding to d � 1
(d � 2). The wave numbers are kout � E=�@c�> 0 and
kin � jE� V0j=�@c�> 0, while Jn refers to the Bessel
function of the first kind, and H�1�n and H�2�n are the
Hankel functions of the first and second kind, respectively
[10]. To construct the eigenfunctions we used the fact that
for rotational symmetric potential 	Jz; H
 � 0 holds, where
Jz � �i@@’ � @�z=2 is the pseudo-angular momentum
operator. Therefore, the pseudo-angular momentum is a
conserved quantity in the scattering process.

The scattering matrix Sj and the amplitude Aj are de-
termined from the boundary conditions, i.e., from the con-
tinuity of the total wave function at the boundary of the
junction: ��out�

j �r � R;’� � ��in�j �r � R;’�. Then, it is
easy to find that
 

Sj �
�H�2�j��1=2��X�Jj��1=2��X

0� �H�2�j��1=2��X�Jj��1=2��X
0�

Dj
;

(4a)

Aj �
H�2�j��1=2��X�H

�1�
j��1=2��X� �H

�2�
j��1=2��X�H

�1�
j��1=2��X�

Dj
;

(4b)

Dj � H�1�j��1=2��X�Jj��1=2��X
0� �H�1�j��1=2��X�Jj��1=2��X

0�;

(4c)

where X � koutR and X0 � kinR.
We now consider the scattering of an incident plane

wave of electron in graphene for r > R. Such an eigenstate
with energy E has the form

 �’i�r; ’� � ��’i�eikoutr cos�’�’i�; (5a)

where

 ��’i� �
1���
2
p

e�i’i=2

ei’i=2

 !
(5b)

and ’i denotes the direction of the propagation of the
incident electron. Using the properties of the Hankel func-
tions [10] one can show that the partial wave expansion of
�’i is

 �’i �
1
2

X
j2J

ij��1=2��h�2�j � h
�1�
j �e

�ij’i : (6)

Without the loss of generalization, we choose the direction
of propagation to be parallel with the x axis, which means
’i � 0 in (5a). Then the wave function for r > R is given
by

 ��out� � �’i�0 �
1
2

X
j2J

ij��1=2��Sj � 1�h�1�j ; (7a)

and the wave function for r < R is given by

 ��in� � 1
2

X
j2J

ij��1=2�Aj�j: (7b)

Note that the second term in (7a) is the scattered wave due
to the scattering of the incident plane wave �’i on the
scattering region described by the potential V�r� �
V0��R� r�. The scattering cross section can be obtained
from the asymptotic form (r� R) of the scattered wave.

Equations (4) and (7) allows us to calculate exactly the
wave functions both inside and outside the junction. Note
that the wave functions depend only on the two dimen-
sionless parameters, kinR and koutR. Figures 2 and 3 show
how the incident plane wave (from direction ’i � 0) pen-
etrates into the circular region of the p-n junction. For r <
R, the formation of the caustics in the wave function
patterns is clearly visible along the solid and dotted lines.
Vodo et al. found a similar wave pattern experimentally by
focusing a plane microwave with a plano-concave lens
fabricated from a photonic crystal having negative refrac-
tive index [11].

In a sharp p-n junction of graphene the optics of electron
flow [4] is very much the same as in photonic crystals with
negative refractive index. In a similar way as in Ref. [4] for
our circular p-n junction the Snell’s law reads

FIG. 2 (color online). j�j2 (in scale of logarithmic to base 10)
is plotted inside and outside, close to the scattering region (the
dashed line shows the boundary of the p-n junction). Here
kinR � 300 and koutR � 300 corresponding to n � �1, and x
and y are in units of R. The solid (dotted) line corresponds to the
caustic for p � 1 (p � 2) (see the text).
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sin�
sin�

� n � �
kin

kout
; (8)

where � and � are the angle of incidence and refraction,
respectively. Since in our calculation both kin and kout are
positive the refractive index becomes negative similarly as
for properly designed photonic crystals.

In what follows we show that the intensity maximum in
the wave function patterns is around the caustic and can be
understood by the Snell’s law (8) with negative refractive
index. Figure 4 shows how the incident ray refracts at the
boundary of the circular p-n junction and then after p� 1
internal reflections exits from the junction. One can clas-
sify the different ray paths by the impact parameter b �
R sin� and the number of chords p inside the circle corre-
sponding to p� 1 internal reflections. Incident rays with
varying impact parameters (�R � b � R) form a family
of rays inside the circle. The envelope of this ray family
results in a caustic as shown in Fig. 5. Each of the chords
has its own caustic.

Using differential geometry to calculate the envelope of
family of curves we find that the curve rc (in Descartes
coordinates shown in Fig. 4) of the caustic of the pth chord
is given by
 

rc�p;��
R

� ��1�p�1

�
� cos�

sin�

 !
� cos�

1� 2�p� 1��0

1� �2p� 1��0

�
cos��� ��

� sin��� ��

 !�
; (9a)

��p;�� � �� 2�p� 1��; (9b)

sin� �
sin�
jnj

; (9c)

�0 �
cos������������������������

n2 � sin2�
p : (9d)

Here � varies between ��=2 and �=2 and the prime

denotes the derivation with respect to �. This is a para-
metric curve for caustics with parameter �. Figures 2 and 3
show the caustics calculated from Eq. (9). In both cases,
one can see that the location of the caustics formed from
the interference pattern of the exact wave functions inside
the junction agrees very well with that obtained from
Snell’s law with negative refractive index. The caustics
for p > 2 are less visible since after each internal reflection
the intensity of the rays decreases.

It is clear from Eq. (9) that for a given p the caustics are
completely determined by the value of the refractive index
n. The caustics in a circular p-n junction belong to the
class of cusp according to the catastrophe optics [6]. As a
consequence of the reflection symmetry of the system with
respect to the x axis, the caustics show this symmetry as
well. This implies that the cusps are always located on the
x axis. The location of the cusp �x; y� � �xcusp; 0� (in polar
coordinates) for the pth chord can be obtained from (9) by
setting � � 0 and we find

 xcusp�p� �
��1�p

jnj � 1� 2p
R: (10)

The cusps show ‘‘alternating’’ features in two respects.
First, the sign of the coordinate xcusp is determined by the
parity of p, and the position of the cusp gradually ap-
proaches the origin with increasing p. Second, the orien-
tation of the cusp, i.e., if it points towards the positive or
negative x direction, is also determined by the parity of p.

As can be seen in Fig. 5 the paraxial (� 1) incident
rays entering into the circular region of the graphene
junction are focused at the focal point for p � 1. The focal
length f measured from the point �r; ’� � �R;�� is given
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β
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FIG. 4 (color online). The basic geometry of ray paths inside
the circular p-n junction. The incident ray from left with impact
parameter b and angle of incidence � is refracted at the bound-
ary of the junction with angle � and then after p� 1 internal
reflections exits from the junction. Here p � 3 and we set n �
�1:3 and � � 60�.

FIG. 3 (color online). The same as in Fig. 2 with kinR � 300
and koutR � 200 corresponding to n � �1:5.
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by the location of the cusp: f � R� jxcuspj � Rjnj=�jnj �
1�. The same is obtained when the refractive index is
replaced by its negative value in the expression of the
image focal length defined in ordinary geometrical optics
[12]. To demonstrate the negative refractive index in the
photonic crystal experiment [11] the focal length was
measured.

To realize the predicted caustic formation and focusing
effect in an experiment, one needs to collimate a mono-
directional electron beam onto the circular scattering re-
gion. This might be achieved utilizing a smooth planar p-n
junction which is known to transmit only those quasipar-
ticles that approach it almost perpendicular to the p-n
interface [13]. Therefore, a possible experimental setup
could be built up from a source electrode, a selectively
transmitting smooth planar p-n junction, the circular scat-
tering region, and a drain electrode. Under bias, the spatial
dependence of the charge density of the transported elec-
trons might be measured by scanning probe techniques.

Circular p-n junctions together with planar ones studied
earlier [4] can be a building block of electron optics in
graphene. However, the refractive index varies with energy
of the incoming electrons; therefore, the temperature needs
to be low enough for sharp images. As it is mentioned in
the introduction, one needs experimentally that a d
�F � 2�=kout (for sharp potential barrier and absence of
intervalley scattering). Another condition required to ob-
serve sharp interference patterns around the caustics is
kinR� 1 corresponding to the quasiclassical limit. For
example, setting E � 40 meV, and V0 � 80 meV (using
gate potential), R � 800 nm, all of these conditions are
fulfilled since d� 10 nm [14], implying that the refractive
index is n � �1, while kinR � 50 and �F � 10d.

In summary, we calculated inside and outside a circular
p-n junction of graphene the scattered wave function of an
incoming plane wave of electrons due to a circular sym-
metric steplike potential. We showed that the scattered
wave function inside the junction has an interference pat-
tern with high intensity maximum located around the
caustics calculated from Snell’s law with negative refrac-
tive index.
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FIG. 5 (color online). Caustic inside the p-n junction formed
from the envelope of the refracted ray paths of different incident
rays. The thick solid line is the caustic curve calculated from (9).
Here p � 1 and n � �1.
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