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It is known that an explosive instability can occur when nonlinear waves propagate in certain media that
admit 3-wave mixing. The purpose of this Letter is to show that explosive instabilities can occur even in
media that admit no 3-wave mixing. Instead, the instability is caused by 4-wave mixing: four resonantly
interacting wave trains gain energy from a background, and all blowup in a finite time. Unlike singularities
associated with self-focussing, these singularities can occur with no spatial structure—the waves blowup
everywhere in space simultaneously. We have not yet investigated the effect of spatial structure on a 4-
wave explosive instability.
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Among mathematical models that describe nonlinear
wave propagation without dissipation, certain ‘‘universal’’
models stand out—each of these models appears when one
takes a specific limit, and each arises in many physical
situations. In all cases, one first linearizes the governing
equations about some trivial state and obtains a (linearized)
dispersion relation, !�k�, which relates the frequency (!)
of a signal to its wave number (k). A 3-wave resonance is
possible if the dispersion relation admits pairs f!m; kmg
such that

 k 1 � k2 � k3 � 0; !1 �!2 �!3 � 0: (1)

For a given problem, (1) may or may not be possible. For
example, in nonlinear optics, (1) occurs only in so-called
�2 materials [1]; for surface water waves, (1) is impossible
for pure gravity waves, but it occurs if both gravity and
surface tension are included in the model [2]. When (1)
occurs, then fA1�x; t�; A2�x; t�; A3�x; t�g, the slowly-varying
complex amplitudes of three-wave modes, evolve accord-
ing to the ‘‘three-wave equations’’: three coupled equations
of the form (with l, m, n � 1, 2, 3 cyclically)

 @tAm � cm � rAm � i�mA
�
nA
�
l : (2)

Here, cm is the group velocity and �m is a real-valued
interaction coefficient, each corresponding to f!m; kmg [3].

In the simplest model of 3-wave mixing, one ignores the
spatial dependence of the interacting modes so that (2)
reduces to three coupled, complex, ordinary differential
equations (ODEs),

 

dA1

dt
� i�1A

�
2A
�
3;

dA2

dt
� i�2A

�
3A
�
1;

dA3

dt
� i�3A

�
1A
�
2:

(3)

If any two �m in (3) differ in sign, then one can show that
all solutions of (3) are bounded for all time. But this is not
the only possibility: situations in which f�1; �2; �3g all
have the same sign occur in plasmas [4,5], in density-
stratified shear flows [6,7], and for vorticity waves [8]. If
all �m have the same sign, then nonzero solutions of (3)

blowup in finite time [like �t� t0��1], including solu-
tions that start with arbitrarily small initial data. This is
called the explosive instability [3,4]. All three waves grow
together, so all three waves draw energy from a back-
ground source and blowup in unison. Thus, the relative
signs of the �m in (2) and (3) signal whether such an energy
source is available in the physical problem that (2) and (3)
approximate.

The main point of this Letter is to show that explosive
instabilities can occur even in situations where a 3-wave
resonance is impossible. In that case, the simplest non-
linear interaction among wave modes is a 4-wave reso-
nance, in which four pairs f!m; kmg satisfy

 k 1 � k2 � k3 � k4 � 0; !1 �!2 �!3 �!4 � 0:

(4)

A common special case, in which one wave mode inter-
acts with two other modes at nearly the same frequency
and wave number,
 

�k� �k� � �k� �k� � k � k;

�!� �!� � �!� �!� �! � !;

leads to the nonlinear Schrödinger (NLS) equation for the
slowly varying, complex amplitude of one wave mode [3]

 i@tA� f�1@
2
x � �2@

2
y � �3@

2
zgA� �jAj

2A � 0: (5)

Here, f�mg are real-valued constants obtained from !�k�,
and � is a real-valued interaction coefficient (provided the
original problem has no dissipation). In optics, (4) occurs
in �3 materials [1]. With one additional term, (5) becomes
the Gross-Pitaevski equation, a commonly used model for
Bose-Einstein condensates [9,10].

More complicated interactions, in which wave modes
interact nonlinearly with themselves and also with other
wave modes, lead to coupled NLS equations [11]. More
complicated still are systems with self-interactions, cross-
interactions, and 4-wave-mixing (with m, p, q, r � 1, 2, 3,
4 cyclically):
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i�@tAm � cm � rAm� �
X
l;n

�m;l;n@xl@xnAm

� Am
X4

n�1

�m;njAnj
2 � �mA

�
pA
�
qA
�
r � 0: (6)

The system in (6) has four such equations. In each equa-
tion, cm is the group velocity and f�m;l;ng are real-valued
constants, all obtained from !�k�; f�mng are coefficients of
NLS-type interaction terms; and f�mg are real-valued co-
efficients of the 4-wave mixing terms. The general form of
this system of equations was first recognized in [12].

[The 4-wave mixing term in (6), �mA�pA�qA�r , can be
written in more than one way. By interchanging the roles
of (Am $ A�m), one can change the sign of �m relative to
that of (i@tAm). We have chosen to write the four-wave
mixing terms as in (6) and to allow the physical problem to
dictate the signs of f�jg4j�1. Alternatively, one could ar-
range for all f�jg to have the same sign, but then one or
more of the factors in A�pA

�
qA
�
r might be replaced by its

complex conjugate. Our result below about the importance
of the relative signs of f�jg should be interpreted in terms
of the convention used in (6).]

In this Letter, we show that an explosive instability of
the kind usually associated with 3-wave interactions can
also occur because of 4-wave mixing. As with (3), a
simpler model with 4-wave mixing than (6) is obtained
by ignoring any spatial dependence of the interacting
modes, so that (6) reduces to four coupled ODEs (with
m, p, q, r � 1, 2, 3, 4 cyclically):

 i
dAm
dt
� Am

X4

n�1

�m;njAnj2 � �mA�pA�qA�r � 0: (7)

Note that with no spatial dependence, the self-focussing
kind of singularity usually associated with NLS-type sys-
tems [13,14] cannot occur.

Without the 4-wave mixing terms in (7), there is no
blowup: one shows directly from (7) that for each m, if
�m � 0, then jAmj2 is constant. Hence, we now assume that
all �m � 0. Then, (7) admits three independent constants
of the motion in the form of Manley-Rowe [15] relations:

 Jm �
jAmj

2

�m
�
jA4j

2

�4
; m � 1; 2; 3: (8)

It follows from (8) that if any two �m differ in sign, then
every jAmj2 is bounded for all time. This result parallels the
corresponding result for (3): all solutions of (3) are
bounded if any two �m in (3) differ in sign. However,
requiring that all the �m have the same sign in (7) is
necessary but not sufficient for an explosive instability: it
is also necessary that the �m be large enough relative toP
�m;n, as we show next.
If all �m in (7) have the same sign, then change

variables fAm�t� �
���������
j�mj

p
Bm�t�; �m;n � �m;nj�nj;

� � sgn��1�
���������������������
�1�2�3�4

p
g to obtain an equivalent system

of ODEs (m, p, q, r � 1, 2, 3, 4 cyclically):

 i
dBm
dt
� Bm

X4

n�1

�m;njBnj2 � �B�pB�qB�r � 0: (9)

This system of ODEs is Hamiltonian, with conjugate
variables fBm; B�m;m � 1; 2; 3; 4g and Hamiltonian H �
H1 �H2, where

 H1 � �
i
2

X4

m;n�1

�m;nBmB�mBnB�n;

H2 � �i��B1B2B3B4 � B
�
1B
�
2B
�
3B
�
4�

(10)

Direct computation shows that H is a constant of the
motion. In addition, in these variables, (8) becomes

 Jm � jBmj2 � jB4j
2; m � 1; 2; 3: (11)

And one can verify directly that the usual Poisson
bracket of any two of (H, J1, J2, J3) vanishes, so these
constants are said to be in involution. Then, it follows that
the system of four complex ODEs in (9) is completely
integrable in the sense of Liouville [16].

Next, we show that solutions of (9) blowup in finite time
if

 

��������
X4

m;n�1

�m;n

��������	 4j�j: (12a)

In terms of the variables in (7), its solutions blowup in finite
time if all four �m have the same sign and

 

��������
X4

m;n�1

�m;nj�nj
��������	 4

���������������������
�1�2�3�4

p
: (12b)

In either notation, these are the criteria for an explosive
instability due to 4-wave mixing. They comprise the main
result in this Letter. Assuming (12) holds, a four-parameter
family of exact, singular solutions of (9) is

 Bm�t� �
cei�m

�t0 � t��1=2��i�m
; m � 1; 2; 3; 4 (13)

where fc; t0; �m; ’mg are real-valued constants, and
 

� �
X4

m�1

�m � arccos
�
�

1

4�

X4

m;n�1

�m;n

�
; (14a)

c2 �
1

2� sin�
; (14b)

�m � c2

�X4

n�1

�m;n � � cos�
�
: (14c)

[These results hold for t0 > t; for t > t0, one changes the
sign of (t0 � t) in (13), and the sign of c2 in (14b) and
(14c).] The four free constants in (13) are t0, and any three
of the four �m. Then the last �m must be chosen to satisfy
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(14a). Substitution of (13) into (9) shows that this form of
solution is possible if and only if (12) holds. One can also
verify by substituting (13) into (10) and (11) that
fH; J1; J2; J3g all vanish for any solution in this family.

Next, we show that when (12) holds, all solutions of (9)
blowup in finite time. To do so, we may consider the
solution in (9) to be the first term in a Laurent series,
near (t � t0), and seek solutions of (9) in the form (form �
1, 2, 3, 4)
 

Bm�t� �
cei�m

�t0 � t�
�1=2��i�m


 �1� �m�t� t0� � �m�t� t0�2 � . . .�: (15)

In (15), fc; t0; �m; ’mg are defined as above, and
f�m;�m; . . .g are complex numbers. Substituting (15) into
(9) and requiring that the complex coefficient of each
power of (t� t0) vanish shows that most of the coeffi-
cients in this expansion are fixed, with four exceptions:
the real parts of three �m can be chosen arbitrarily, as
can the imaginary part of one �m. Thus, the family of
solutions in (15) contains eight free, real constants. [For
example, one can choose the 8 free constants to be
ft0; �1; �2; �3;Re��1�;Re��2�;Re��3�; Im��4�g.] There-
fore, the family of solutions in (15) is the general solution
of (9), so all solutions of (9) with nonzero initial data
blowup in finite time, provided only that (12) holds.

Because the solutions in (13) all occur with f0 � H �
J1 � J2 � J3g, it follows that the four new constants in
(15) must determine fH; J1; J2; J3g. One can show that for
m � 1, 2, 3,

 Jm � 2c2�Re��4� � Re��m��: (16)

Then Im��4� determines the value ofH, but we have found
no simple way to write this relation.

It is known that the self-focussing (or ‘‘wave collapse’’)
singularity of an NLS-type equation occurs only for a
range of H [13]. The singularity in (15) occurs for any
(real) values of fH; J1; J2; J3g, provided only that (12)
holds, so the two kinds of singularities differ in this respect.
They also differ because spatial structure plays an essential
role in a self-focussing singularity, but it plays no role
whatsoever here.

It remains to show that the solutions of (9) must be
nonsingular if (12) is not satisfied, so that (12) is both
necessary and sufficient for an explosive instability.
Suppose that jB4�t�j ! 1 as t! t0. Then, it follows
from (11) that all four jBm�t�j must grow at the same
rate. Hence, as t! t0, the dominant terms in (10) are

 H1 � �
i
2

X4

m;n�1

�m;njB4j
4 �O�jB4j

2�;

H2 � �2i�jB4j
4 cos�’� �O�jB4j

3�;

where ’�t� is some (unknown) phase. These dominant

terms must balance as t! t0, so necessarily

 

��������
1

2

X4

m;n�1

�m;n

��������jB4j
4 � j2�jB4j

4 cos�’�j 	 2j�jjB4j
4

(17)

in this limit. Dividing by jB4j
4 shows that no explosive

singularity can occur for j
P4
m;n�1 �m;nj> 4j�j. This com-

pletes the proof.
Explosive instabilities due to 3-wave mixing have been

known for 30 years [4–8,17,18]. To our knowledge, no
explosive instability caused by 4-wave mixing has ever
been observed in a physical system. The analysis above
indicates that it should be possible. As with 3-wave mix-
ing, an explosive instability in a 4-wave system requires a
background source of energy so that all four-wave modes
can grow in intensity together. And as with 3-wave mixing,
the indication that such a background source is available is
that all four �m in (6) or (7) have the same sign. One
difference between the two processes is that for 4-wave
mixing, this agreement in signs of the �m in (7) by itself
does not guarantee an explosive instability—the inter-
action coefficients must also satisfy (12).

This analysis establishes the existence of a new family
of singular solutions of (6), which approximates many
physical systems. However, it leaves unanswered other
questions: (i) The singular solutions in (13) and (15)
have no spatial structure. How does spatial structure in
the initial data for (6) affect these singularities? For an
explosive instability due to 3-wave mixing, the correspond-
ing question was answered in part by Kaup [18]. (ii) The
energy source that drives these singular solutions is im-
plicit in (6), through the coefficients in the equation. What
is the nature of this energy source in a concrete physical
example? (iii) Equations (6) approximate many physical
systems under a set of assumptions, including one that
wave amplitudes are not too large. When a solutions of
(6) becomes singular, then the mathematical model is no
longer valid. When a solution of (6) becomes singular,
what happens in any of the actual physical problems that
(6) approximates? (iv) The explosive instability, discussed
here, should not be confused with a wave-collapse singu-
larity, even though both are singularities that can arise from
smooth initial data in finite time. In wave collapse, a finite
amount of energy becomes concentrated in a smaller and
smaller spatial region, and the singularity that occurs is
extremely localized in space. This process is quite different
from an explosive instability, in which all of the interacting
waves acquire more and more energy from an unlimited
(external) supply, and the blowup occurs everywhere in
space simultaneously. To our knowledge, the system of
equations in (6) is the first known example of a family of
physically relevant models whose solutions can blowup in
a finite time in two completely distinct ways, depending on
signs of coefficients. We have shown that the explosive
instability requires that all four �m have the same sign; we
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conjecture that a wave-collapse kind of singularity cannot
occur if all four �m have the same sign.
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