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We study directed transport in a classical deterministic dissipative system. We consider the generic case
of mixed phase space and show that large ratchet currents can be generated thanks to the presence, in the
Hamiltonian limit, of transporting stability islands embedded in the chaotic sea. Because of the
simultaneous presence of chaos and dissipation the stationary value of the current is independent of
initial conditions, except for initial states with very small measure.
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The ratchet effect, that is, the possibility of obtaining
directed transport of particles in the absence of any net bias
force, is a problem at the heart of statistical mechanics.
Ratchet transport in systems at equilibrium is forbidden by
the second principle of thermodynamics [1]. On the other
hand, it is possible to overcome this limitation in systems
out of equilibrium, provided all space-time symmetries
which inhibit directed motion are broken [2]. The ratchet
phenomenon has recently gained renewed interest [3,4] as
a model elucidating the physics of molecular motors [5].
Moreover, directed transport may lead to technological
applications at the nanoscale [6], including new electron
pumps, molecular switches, rectifiers, and transistors.

Previous theoretical studies have shown the ratchet ef-
fect in systems in which noise is absent and its role is
played by the deterministic chaos induced by the inertial
term [7]. In particular, the origin of current reversal in such
inertia ratchets has been carefully investigated [8].

In spite of these pioneering works, the interrelation
between the complexity and the rich variety of classical
chaotic motion in conservative systems and the appearance
of the ratchet phenomenon when dissipation is introduced
is not known. In particular, the role of stable islands in the
mixed phase space structure which is generic in nonlinear
dynamical systems is not clear [9].

In this Letter, by considering a periodically kicked,
dissipative, inertia ratchet, we show that the generic mixed
phase space structure of the conservative case may lead to a
strong ratchet phenomenon when dissipation is introduced.
In particular, for strong dissipation, large currents may
arise in a short time scale. On the other hand, for weak
dissipation, large ratchet currents can be achieved nearly
independently of initial conditions, as a result of a beautiful
interplay between chaotic diffusion, ballistic transport of
islands, and dissipation.
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The system we study is a particle moving in one dimen-
sion [x € (—oo, )] in a periodic kicked asymmetric po-
tential:

Vix,r)= K|:cos(x) +4cos(2x + ¢)} S 8(r—mT),
(1)

where T is the kicking period, which is set to unity in this
Letter. The evolution of the system in one period is de-
scribed by the map

{ﬁ = yp + K[sin(x) + asin(2x + ¢)],

2
x=x+p, @

where p is the momentum variable conjugated to x and
v € [0, 1] is the dissipation parameter, describing a veloc-
ity proportional damping. The limiting cases y = 0 and
v = 1 correspond to overdamping and Hamiltonian evo-
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FIG. 1 (color online).
ent times, for a = 0.5.

Ensemble average current (p) at differ-
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lution, respectively. The spatial symmetry is broken at a #
0, ¢ # nm, with n integer [12]. However, directed trans-
port is forbidden in the Hamiltonian limit due to time-
reversal symmetry [13]. In this limit system (2) exhibits the
typical mixed phase space structure. A central point of this
Letter is to show that even very tiny, almost invisible
islands, embedded in the chaotic sea play a crucial role
in the generation of large ratchet currents when a small
dissipation is added.

In Fig. 1 we plot the ratchet current (p) as a function of
the dissipation parameter 7y at different times ¢ (the discrete
time ¢ measures the number of kicks). Here we set K =
6.5, a = 0.5, ¢ = /2, and we follow the evolution in
time of a large number of trajectories whose initial con-
ditions are randomly and uniformly distributed in the unit
cell —7 = p <, 0 = x <27. Therefore, the initial av-
erage momentum is (p) = O for any . Since all relevant
space-time symmetries [2] are broken at y # 1, then a
directed current (p) # 0 can be generated. The dependence
of the current on vy is rather complicated. In particular, we
can see plateau regions inside which the asymptotic ratchet
current is independent of y. We note that for strong dis-
sipation (y =< 0.6) the current converges to its asymptotic
value very rapidly and typically independently of initial
conditions, the dynamics being characterized by a single
stationary distribution. The weakly dissipative regime will
be discussed later.

In order to understand the behavior of the ratchet current
we first perform a linear stability analysis of map (2). The
fixed points of the map when x is taken modulo 27 are
given by

p* = 2lm, | integer,
{ 3)

(y — 1)2l7 + K[sin(x*) + acos(2x*)] = 0,

where for the sake of simplicity we have considered the
case ¢ = /2. The stability of these fixed points is deter-
mined by the eigenvalues A; , of the Jacobian

ap.x) (v K[cos(x) — 2a sin(2x)] 4
ap,x) <y 1 + K[cos(x) — 2asin(2x)] ) “)

The modules |A ;| versus x are shown in Fig. 2(a) for
different y. The stable intervals, in which the modules of
the eigenvalues are both less than 1, depend only very
slightly on . Therefore we may consider the case y =
1, for which the stability intervals can be computed analyti-
cally and are given by (arcsing-, %), (7 — arcsing-, ¢;),
(c2,3F), where ¢y, ¢, are the real roots of the equation
cos(x) — 2asin(2x) = —%. These intervals are shown as
shadowed regions in Fig. 2(b).

As illustrated in Fig. 2(b), the fixed points (x*, p* =
27rl) can be determined graphically. If x* resides in a
shadowed region, then the fixed point is stable. Clearly

there are no stable fixed points for / = 0. Instead, for any

positive integer /, stable fixed points exist from y = 1 —
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FIG. 2 (color online). (a) Modules of the eigenvalues A 5 (x) of
the stability matrix (4) for different values of y. (b) Dashed
curve: f(x) = K[sin(x) + acos(2x)]; solid lines: g(x) =
(1 — y)2lm for different [ and 7y. In the shadowed regions,
[ A1 (x)| are both less than 1.
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[14].

The bifurcation diagram of Fig. 3 confirms the above
analytical estimates. The positions of the main fixed point
windows (I = 1,2,3) coincide with the plateaus (p) =
2, 471, 671 observed in Fig. 1. At both ends of the fixed
point windows tangent bifurcations occur which corre-
spond to transitions from simple to strange attractors. (A
similar picture holds for stable periodic orbits, even though
their positions cannot be so easily calculated analytically.)

Since the width of the /th stability window is propor-
tional to } and 37, 1 does not converge, these windows
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FIG. 3 (color online). Bifurcation diagram: 5 X 103 iterates
are drawn after a transient of 10° map steps, starting from
3600 initial states drawn from a uniform distribution in the
unit cell 0 = x <27, —7 = p < 7. The analytical expectations
for the position of fixed point windows at a = 0.5 are also
indicated.
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must overlap when [/ is large enough. Therefore, multiple
attractors (and also periodic orbits) must coexist when y
approaches 1. Their attractive basins cut the phase space
into many pieces and here one may expect the asymptotic
ratchet current to depend, in general, on initial conditions.
The large negative values of (p) that appear at long times in
Fig. 1 are the consequence of trajectories ending up on
periodic orbits after a long transient chaotic motion.

For very small dissipation (y = 0.98), we could observe
chaotic motion only on a fractal set even though it cannot
be excluded that this is a transient with a lifetime much
exceeding the total integration time. On the other hand, this
weakly dissipative regime possesses very interesting fea-
tures. Because of chaotic diffusion, the momentum proba-
bility distribution (Fig. 4) widens in time and eventually,
due to dissipation, saturates to a stationary distribution
close to a Gaussian. This is clearly seen in Fig. 4 in which
the most remarkable feature is the small peak moving
ballistically in the direction of positive p. This peak is
due to the presence of small stability islands in the
Hamiltonian limit y = 1 and plays a key role in the gen-
eration of the ratchet current.

To illustrate this point, we plot in Fig. 5 the evolution in
time of the first two moments of the probability distribution
P(p) and compare two different cases corresponding to
two different initial conditions: (i) uniform distribution
inside the unit cell p € [—7, 7), x € [0, 27) and (ii) uni-
form distribution inside the main transporting stability
island. This island, for y = 1, corresponds to ballistic
motion in the positive momentum direction (‘‘accelerator
mode’”), with the momentum increased of 47 every 3 map
iterations. Indeed this island is centered around the peri-
odic orbit (xy, p;) = (1.6073, 4.9802) — (xy, po) =
(29103, 1303) — (X3, p3) = (29103, 0) — (X4, p4) =
(x1, p1 + 47 = p;) (here x and p are taken modulo 277).
The area of the island =103, that is, only 3 X 107 of the
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FIG. 4 (color online). Snapshots of the momentum probability
distribution for 1 —y = 1074, starting from 3.6 X 10° initial
conditions randomly and uniformly chosen inside the unit cell
p €E[—m ), x €[0,27). In the inset the two curves drawn
after long integration times, ¢ = 10° and t = 5 X 10°, overlap.
This indicates that the distribution saturates (at least up to the
integration times explored in our numerical simulations).

available phase space. Notwithstanding the accelerator
mode, the ratchet current averages to zero in the
Hamiltonian limit: a sum rule exists [10] such that the
motion of the islands in the direction of positive momen-
tum is balanced by the motion of the chaotic sea in the
opposite direction. This sum rule no longer applies when
dissipation is included since the latter mixes the sets which
are invariant in the Hamiltonian limit, namely, the islands
and the chaotic sea. Still, if dissipation is weak, these two
sets remain essentially disconnected for a long time scale
t, * ﬁ As a consequence, as shown in Fig. 5, for r <1,
the ratchet current (p) = 0 when starting from the entire
unit cell, while it grows linearly in time when the initial
distribution is concentrated inside the island. In this latter
case, as expected, the acceleration of the island is %(277);
that is, the island is shifted along p by 2 unit cells every 3
map iterations. At ¢ ~ t,,, a momentum high enough is
reached to allow dissipation to drive particles outside the
island. Then the motion of these particles becomes chaotic
and therefore the second moment of the distribution sud-
denly increases, while the first moment decreases due to
dissipation. Correspondingly, for the initial condition in-
side the entire unit cell, the ratchet current starts to increase
at t ~ t,, until the asymptotic value is reached [15]. This
provides direct numerical evidence that the ratchet current
is generated due to the presence of integrable islands in the
Hamiltonian limit, the island and the chaotic sea being
finally mixed by dissipation.

We would like to stress that, thanks to the presence of
integrable islands in the Hamiltonian limit, large ratchet
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FIG. 5 (color online). First and second moment of the distri-
bution P(p) as a function of time, for two different initial
distributions.
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FIG. 6 (color online). Stationary ratchet current in the weak
dissipation regime. The current is averaged over 2 X 107 map
iterations, taken after an initial transient of 2 X 107 map steps.

currents can be achieved also for weak dissipation: as
shown in Fig. 6, we can have (p) > 26.

A completely different behavior takes place when this
structure of islands is absent. Consider, for example, the
ratchet model:

p=7yp+K[x—m— ,
{p yp + K[x — 7 — acos(x)] 5)

X =x+p.

This map, in the Hamiltonian limit and for a € [0, 1), is
completely chaotic with no stability islands [16]. For this
map, we have always found as stationary distribution a
strange attractor, supporting a very weak ratchet current.
For instance, at K = 1, a = 0.7 we have obtained (p) <
0.13 for any value of y. Basically the ratchet current is due
only to the asymmetry of the attracting set which, at least
for weak dissipation, is also weak.

In summary, the results presented in this Letter show that
large ratchet currents can be generated in a dissipative
system thanks to the presence, in the Hamiltonian limit,
of transporting integrable islands embedded in a chaotic
sea. This phenomenon leads, due to the joint presence of
chaos and dissipation, to large ratchet currents nearly
independently of initial conditions and is generic for sys-
tems with spatial and temporal periodicity, in that trans-
porting islands are typical for such systems in the
Hamiltonian limit.

Finally, we point out that the dissipative ratchet model
discussed in this Letter could be realized by means of cold
atoms in optical lattices, where it is possible to implement
the asymmetric potential (1) [17] and a velocity propor-
tional damping [18]. Since kicked systems similar to ours
have been implemented in the deep quantum regime [19],
it appears possible to investigate experimentally the impact
of purely quantum effects such as dynamical localization
on the ratchet transport discussed in this Letter.

We thank Gabriel Carlo for useful discussions. This
work is supported in part by an Academic Research
Grant from MOE.
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