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We study Chern-Simons (CS) gravity in the parametrized post-Newtonian (PPN) framework through a
weak-field solution of the modified field equations. We find that CS gravity possesses the same PPN
parameters as general relativity, except for the inclusion of a new term, proportional to the CS coupling
and the curl of the PPN vector potential. This new term leads to a modification of frame dragging and
gyroscopic precession and we provide an estimate of its size. This correction might be used in experi-
ments, such as Gravity Probe B, to bound CS gravity and test string theory.
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Introduction.—Current astronomical observations, such
as the apparent acceleration of the Universe, suggest a
possible infrared modification to general relativity (GR).
In the same spirit, another unresolved problem of cosmol-
ogy, the cosmic baryon asymmetry, suggests a modifica-
tion of general relativity via the inclusion of a Chern-
Simons (CS) correction during the inflationary period [1].
This Chern-Simons correction is not an ad hoc extension,
but it is actually motivated by both string theory, as a
necessary anomaly-canceling term to conserve unitarity
[2], and loop quantum gravity [3]. Recently, imprints of
CS gravity have been investigated in the gravitational wave
spectrum of the cosmic microwave background (CMB),
where it was found to produce a circular, V-mode, polar-
ization, albeit marginally detectable [4]. Motivated by
observational signatures of string theory and loop-quantum
gravity, we will explore and develop a new observational
window to distinguish CS gravity from classical GR, which
is of direct interest to gravitational experiments currently
underway, such as Gravity Probe B (GPB) [5] and lunar
ranging [6].

A proven avenue for testing alternative theories of grav-
ity with current solar-system experiments is the parame-
trized post-Newtonian (PPN) framework [7]. This
framework considers weak-field solutions of the field equa-
tions of the alternative theory and expresses them in terms
of PPN potentials and parameters. The PPN potentials
depend on the details of the system under consideration,
while the PPN parameters can be mapped to intrinsic
parameters of the theory. Predictions of the alternative
theory can then be computed in terms of PPN parameters
and compared to solar-system experiments, leading to
stringent tests. One of the strengths of this framework is
its generality: a single supermetric with certain PPN pa-
rameters can be constructed to reproduce and test several
different alternative theories [7] (e.g., scalar-tensor, vector-
tensor, bimetri, c and stratified theories). Other tests of
alternative theories of gravity have also been proposed,
some of which require a gravitational wave detection and
shall not be discussed here [8–10].

In this Letter, we present a parametrized PPN expansion
of CS gravity to allow for tests with current solar-system
experiments. We discover that CS gravity demands the
introduction of only one new term to the PPN supermetric
and, thus, one new PPN parameter. This new term depends
both on an intrinsic parameter of CS gravity, as well as on
the curl of the PPN vector potential. Such a coupling of CS
gravity to gravitational vector currents had so far been
neglected. Furthermore, curl terms in the supermetric had
also been neglected by the PPN community because other
alternative theories had not required them. We find that this
new term captures the key physical effect of CS gravity in
the weak-field limit, leading to a modification of frame
dragging that could be used to test this GR extension with
GPB [5].

CS gravity in a nutshell.—CS gravity modifies GR via
the addition of a new term to the action, namely [11,12],

 SCS �
1

16�G

Z
d4x

1

4
fR?R; (1)

where G is Newton’s gravitational constant, f is a pre-
scribed external quantity [13] (with units of squared length
in geometrized units) that acts as a coupling constant, R is
the Ricci scalar, and the star stands for the dual operation.
The modified field equations can be obtained by varying
the action with respect to the metric. These equations, in
trace-reversed form, are

 R�� � C�� � 8��T�� �
1
2g��T�; (2)

where C�� is a Cotton-like tensor, R�� is the Ricci tensor,
T�� is a stress-energy tensor, with T its 4-dimensional
trace, and Greek letters range over spacetime indices.
The Cotton tensor encodes the CS modification to GR:

 C�� � �
1�������
�g
p �f;��

���
��D�R��� � �D�f;��

?R�
�� ��
� �;

(3)

where parentheses stand for symmetrization, g is the de-
terminant of the metric, ����� is the Levi-Civita symbol
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[14], D� and colon subscripts stand for covariant and
partial differentiation, respectively.

The CS correction to the action has been shown to lead
to birefringence in the polarization of gravitational waves
[16]. In this context, birefringence is a change in the
amplitude of different polarization modes as the wave
propagates. Recently, there have been proposals [17] of
astrophysical tests of theories where gravitational waves
with different polarization propagate at different speeds,
but this is not the case in CS gravity. Nonetheless, such
amplitude birefringence in gravitational waves could have
a signature in the anisotropies of the CMB [1] and could
explain baryogenesis during the inflationary epoch [4].
Given that the CS extension has been key in proposing a
plausible explanation to some important cosmological
problems, it seems natural to study CS gravity in the light
of solar-system experiments.

Can we understand the CS correction in more physical
terms? For this purpose, let us consider the CS coupling
parameter f as a consequence of some external field that
permeates all of spacetime, such as a model-independent
gravitational axion. This field could depend on some in-
trinsic properties of spacetime, such as the fundamental
string scale [18] or the existence of warped compactifica-
tions [19]. Furthermore, this field could also be coupled to
regions of high curvature, such as binary neutron star
systems, through standard model-like currents. These cou-
plings have been proposed as enhancements to the CS
modification, which would otherwise be suppressed by
the Planck scale. For simplicity, in this Letter we shall
concentrate on a CS coupling parameter that is spatially
isotropic and whose only nonvanishing derivative is _f.
These assumptions are made such that time-translation
symmetry and reparametrization invariance are preserved
in the modified theory [11].

Weak-field expansion of CS gravity.—Let us consider a
system that is weakly gravitating, such that we can expand
the metric about a fixed Minkowski background 	��. In
other words, let us write g�� � 	�� � h��, with h�� a
small perturbation, and expand the Cotton tensor to second
order in h��. We then obtain a complicated expression that
can be schematically given by [20]

 C���N
�1�
���� 	h000��N

�2�
���� 	hh000��N

�3�
���� 	h0h00�; (4)

where primes stand for spatial or temporal derivatives and
� 	 A is the full contraction of the Levi-Civita symbol with
the tensor A�1;...;�n

. Note that here we have not assumed
any gauge conditions and, thus, Eq. (4) could be used in
future work to calculate gravitational wave solutions to
O�h�2. Equation (4) to linear order and in the Lorenz gauge
[h���; � h;�=2, h 
 	��h��] reduces to the previously
known expression [11]

 C�� � �
_f

2
�0��

���	h���;� �O�h�2; (5)

where 	�� is the Minkowski metric and �	 is the
D’Alambertian associated with it.

Before proceeding with the PPN solution of the modified
field equations, we must discuss the stress-energy source
that we shall employ. Here we model this tensor as that of a
perfect fluid (cf., e.g., [7]). Such a stress-energy tensor is
sufficient to obtain the PPN solution of the modified field
equations for solar-system experiments, where the internal
structure of the fluid bodies shall be neglected to lowest
order by the effacement principle [21].

The stress energy considered here requires the strong
equivalence principle (SEP) to hold in CS gravity [1]. This
principle states that the outcome of all local gravitational
experiments is independent of the experimenter’s reference
frame. In other words, the motion of test particles is
exclusively governed by the spacetime metric, through
the divergence of the stress-energy tensor. In CS gravity,
the divergence of Eq. (2) leads to

 D�C�� �
_f
�0

8
�������
�g
p R?R � 8�D�T��; (6)

where D�G�� � 0 by the Bianchi identities. The right-
hand side of Eq. (6) vanishes in vacuum and, thus, the SEP
holds provided R?R � 0, which is known as the
Pontryagin constraint. In fact, in the original formulation
of CS gravity [11], this constraint was independently re-
quired to preserve time-translation symmetry and spatial
reparametrization invariance. We shall later see that the
solution to Eq. (2) found here automatically satisfies this
constraint to O�h�2 and, thus, the SEP holds.

Weak-field solution.—Let us first study the weak-field
solution to the modified field equations in Lorenz gauge.
The formal first-order solution of Eq. (2), with Eq. (5) used
for the Cotton tensor, is simply [15]

 h����16���1
	 � �T��� _f�k‘i�
i��T��‘;k�

1
2
i��	��‘T;k��;

(7)

where �T�� is the trace reversed T��. Note that this formal
solution has the property that as _f ! 0 it reduces to that
predicted by the post-Newtonian (PN) expansion of GR
[21]. In fact, such a solution is the cornerstone of the PN
formalism and would be essential if one were to pursue
such an expansion of CS gravity.

Let us now proceed with the PPN solution of the modi-
fied field equations. The PPN formalism differs from the
PN Lagrangian formulation for inspiraling compact bi-
naries [21] by the use of a different gauge, the harmonic
one [22]. In the PPN formalism, one usually employs a
PPN gauge, designed such that the spatial part of the metric
is diagonal and isotropic. These conditions can be enforced
perturbatively via [7]

 hjk;
k � 1

2h;j � O�4�; h0k;
k � 1

2h
k
k;0 � O�5�; (8)

where hkk is the spatial trace of the metric perturbation and
the symbol O�A� stands for PN remainders of order
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O�1=c�A, with c the speed of light [15]. One can show that
Eq. (8) is related to the Lorenz gauge via an infinitesimal
gauge transformation. The solution to the CS modified
field equations in PPN gauge is given by
 

g00 � �1� 2U� 2U2 � 4�1 � 4�2

� 2�3 � 6�4 �O�6�;

g0i � �
7
2Vi �

1
2Wi � 2 _f�r � V�i �O�5�;

gij � �1� 2U�
ij �O�4�;

(9)

where fU;�1;�2;�3;�4; Vi;Wig are PPN potentials (see,
e.g., [7] for definitions and discussion of these potentials).
Both the PPN potentials and parameters take the same
values in CS gravity as in GR. Equation (9) is a solution
to 1 PN order, since from it one could calculate the point-
particle Lagrangian to O�4�. As one can check, this solu-
tion satisfies the Pontryagin constraint [15].

Chern-Simons gravity introduces a correction to the
metric in the vectorial sector of the metric perturbation.
This correction is proportional to the first time derivative of
the CS coupling parameter _f and to the curl of the PPN
vector potential Vi. In principle, there is also a CS coupling
to the other PPN vector potential Wi, but this contribution
is already accounted for because r�Wi � r� Vi. Since
this is the only modification to the metric, the PPN pa-
rameters of CS gravity are identical to those of classical
GR, with the exception of the inclusion of a new term in
g0i. In fact, defining the CS correction as 
g0i � g0i �
gGR

0i , with gGR
0i the GR prediction, we get

 
g0i � �M�r � V�i; (10)

where we have defined a new PPN parameter, � 
�
2 _f=M, with M the characteristic mass scale of the source
inducing the vector potential. This new PPN parameter is
rescaled by M to make it dimensionless and coordinate
independent. The rescaling choice might seem arbitrary,
but since _f has units of mass it can be interpreted as some
CS mass scale, yielding � / mCS=M as a ratio of masses
with a clear physical meaning.

Until now, a PPN potential of the type of Eq. (10) had
not been considered, nor had any experimental constraints
been placed on �. Clearly, any experiment that samples the
vectorial sector of the metric perturbation, and thus, the
frame-dragging effect, could achieve such a constraint.

Astrophysical tests.—Consider a system of A nearly
spherical bodies in the standard PPN point-particle ap-
proximation, where the PPN vector potential is [7]

 Vi �
X
A

mA

rA
viA �

1

2

X
A

�
JA
r2
A

� nA

�
i
; (11)

with mA the mass of the Ath body, rA the field point
distance to the Ath body, niA � xiA=rA a unit vector pointing
to the Ath body, vA the velocity of the Ath body, and JiA the
spin-angular momentum of the Ath body. When the num-
ber of bodies A � 2, Eq. (11) is the vector potential for a

binary of spinning compact objects, while when there is
only one body present, A � 1, it represents the potential
outside a moving spinning body. For such a vector poten-
tial, the CS correction to the metric becomes

 
g0i � 2
X
A

_f
rA

�
mA

rA
�vA � nA�

i �
JiA
2r2

A

�
3

2

�JA 	 nA�

r2
A

niA

�
;

(12)

where the 	 and � operators are the flat-space inner and
cross products. Note that the CS correction couples both to
the spin and orbital angular momentum of the system.

The full gravitomagnetic sector of the metric becomes
 

g0i �
X
A

�
�

7

2

mA

rA
viA �

mA

6rA
�vA � v

�eff�
A �i

�
1

2
niA
mA

rA
�v�eff�
A 	 nA� � 2

�
J�eff�
A

r2
A

� nA

�
i
�
; (13)

where we have introduced an effective velocity and angular
momentum through

 viA�eff� �v
i
A�6 _f

JiA
mAr2

A

; JiA�eff� �J
i
A�

_fmAv
i
A: (14)

When the spin-angular momentum JA vanishes, g0i is
identical to that of a spinning moving object, with the
spin induced by the CS coupling to the orbital angular
momentum. Such a coupling leads to an interesting physi-
cal interpretation: if we model the field that sources the CS
coupling as a fluid that permeates all spacetime, the CS
modification to the metric is nothing but the ‘‘dragging’’ of
such a fluid [15], whose strength is proportional to the first
derivative of the CS coupling parameter.

The CS correction to the metric computed here couples
to the three-velocity of the sources, which could suggest
the possibility that this effect is not coordinate invariant.
However, this velocity-dependence comes directly from
the PPN vector potential Vi [Eq. (11)]. Therefore, the CS
correction to the metric is as coordinate invariant as the GR
PPN metric itself, since this also depends on Vi [Eq. (9)]
[7]. Observables, on the other hand, must be constructed in
a coordinate-invariant way, which is sensitive to the choice
of basis vectors. This choice in general depends on the
experiments that look for such observables [23] and a more
formal analysis of such coordinate issues should be carried
out elsewhere.

We can now compute the correction to the frame-
dragging effect in CS gravity and compare it to the
Lense-Thirring effect. Consider then a free gyroscope in
the presence of the gravitational field of Eq. (13). The
gyroscope will acquire the precessional �i � �r� g�i,
where gi � g0i. Therefore, the CS modification to the pre-
cession angular velocity, defined via 
�i � �i ��I

GR,
where �i

GR is the GR prediction, is given by

 
�i � �
X
A

_f
mA

r3
A

�3�vA 	 nA�n
i
A � v

i
A�; (15)
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while the full Lense-Thirring term is

 �i
LT � �

1

r3
A

X
A

JiA�eff� � 3niA�JA�eff� 	 nA�
i; (16)

which vanishes for static sources. As before, the CS cor-
rection has the effect of modifying the classical GR pre-
diction via the replacement JiA ! JiA�eff�.

If experiments [5] detect frame dragging and find it in
agreement with the GR prediction, we can immediately
test CS gravity. In order to place a bound, however, a
careful analysis must be performed, using the tools devel-
oped in [23] and properly accounting for the experiment’s
frame. Nonetheless, we can construct a crude, order-of-
magnitude estimate of the size of such a bound. In order to
do so, we assume the Newtonian limit O�J� �O�mRv�,
withm the total mass of the system, R the distance from the
gyroscope to the gravitational source (for GPB, R�
7000 km [23]), and v the orbital velocity, such that we
can model the CS correction as j�j ��GR�1� _f=R� [24].
Then, a 1% accuracy in the frame-dragging measurement
relative to the GR prediction (nominal for GPB [23]) trans-
lates, roughly, into the bound _f & 10�3 s.

Let us conclude with a discussion of the scaling of the
order of magnitude of the CS correction. From Eqs. (13)
and (15), we can see that the CS correction is of O�3� if
_f=rA is of order unity, which implies that it is enhanced in

regions of high curvature, precisely where the PPN and
post-Newtonian analysis does not hold. Such scaling also
suggests that the CS effect might be larger in highly
dynamical systems that are not weakly gravitating, such
as compact object binaries. If frame dragging were mea-
sured in such systems to sufficient accuracy, then possibly
a much better bound could be placed on CS gravity.

Conclusions.—We have calculated the weak-field ex-
pansion of CS gravity and solved the field equations in
the PPN formalism. We have found that CS gravity has the
same PPN parameters as GR, except for the inclusion of a
new term in g0i, which can be parametrized in terms of a
new PPN quantity. We have seen that this new term leads to
a correction to the frame-dragging effect, thus allowing for
the first solar-system test of CS gravity.

The CS correction is clearly enhanced in the nonlinear
regime, where the stress-energy tensor diverges. This re-
gime, however, is precisely where the PN approximation
and PPN framework break down. Therefore, an accurate
analysis of the size of the CS correction relative to the GR
prediction in the nonlinear regime will have to await full
numerical simulations of modified GR.
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Note added.—After submission of this work, a paper
was submitted that expands on the analysis presented here

to account for extended sources [25]. After a detailed
study, a bound is placed on the CS coupling parameter
with data from LAGEOS and GPB.
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