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We study the statistics of return intervals between events above a certain threshold in multifractal data
sets without linear correlations. We find that nonlinear correlations in the record lead to a power-law
(i) decay of the autocorrelation function of the return intervals, (ii) increase in the conditional return
period, and (iii) decay in the probability density function of the return intervals. We show explicitly that all
the observed quantities depend both on the threshold value and system size, and hence there is no simple
scaling observed. We also demonstrate that this type of behavior can be observed in real economic records
and can be used to improve considerably risk estimation.
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The understanding of the occurrence of extreme events
is of great importance in various fields of science [1– 4].
One of the central quantities here is the time interval
between successive events above (or below) some thresh-
old Q, sometimes referred to as reoccurrence times or
return intervals. By studying the statistics of the return
intervals for increasing threshold heights Q one aims to
find out the laws governing the occurrence of extreme
events.

It is well known that for uncorrelated data sets the
probability density function (PDF) of the return intervals
is a simple exponential, lnPQ�r� � �r=RQ, where RQ is
the mean return interval (‘‘return period’’), and the return
intervals are uncorrelated. For long-term correlated records
�xi�, where the autocorrelation function Cx�s� between two
events separated by the time s decays by a power law,
Cx�s� � s

��, 0<�< 1, the statistics of the return inter-
vals is changed considerably. The PDF decays by a
stretched exponential [5–7], lnPQ�r� � ��r=RQ�

�, and
the sequence of return intervals is also long-term correlated
with the same exponent � as the original record [6,7]. It
was shown that this leads to a clustering of extreme events,
which can be observed both in climate records [8,9] and in
volatility records in the financial markets [10]. For studies
of long-term persistence in condensed matter physics, we
refer to [11].

In this Letter, we are interested in the statistics of the
return intervals in multifractal data sets �xi�. Unlike long-
term correlated (‘‘monofractal’’) data sets, the correlation
structure of multifractal data sets cannot be quantified by a
simple exponent, but an infinite hierarchy of exponents is
needed [12–14]. To study how the nonlinear correlations
affect the statistics of the return intervals, we focus on data
sets where the linear correlations [described by the auto-
correlation function Cx�s�] vanish. Perhaps the most
prominent examples for these kinds of data sets are pre-
cipitation [15,16] and financial records [17–20]. We find
that the nonlinear correlations lead to linear long-term
correlations among the return intervals, with an autocorre-

lation function that decays by a power law and an exponent
that increases monotonically with increasing threshold Q.
Also, the PDF of the return intervals shows pronounced
power-law behavior with an exponent that depends on Q.
At very large values of r=RQ, the PDF shows a stronger
decay which may be interpreted as a finite-size effect.
Finally, we show explicitly that all these features can be
observed in financial data sets.

For generating multifractal data sets, we consider a
variant of the multiplicative random cascade process, de-
scribed, e.g., in [13,14,21,22]. In this process, the data set
is obtained in an iterative way, where the length of the
record doubles in each iteration. We start with the zeroth
iteration n � 0, where the data set �xi� consists of one
value, x�n�0�

1 � 1. In the nth iteration, the data x�n�i , i �
1; 2; . . . ; 2n, is obtained from

 x�n�2l�1 � x�n�1�
l m�n�2l�1 and x�n�2l � x�n�1�

l m�n�2l ; (1)

where the multipliers m are independent and identically
distributed random numbers with zero mean and unit vari-
ance. The resulting PDF is symmetric with log-normal
tails. As we show below, there are no linear correlations
in these data sets, i.e., Cx�s� � 0 for s > 0.

There are several ways to characterize multifractal data
sets. Here we chose the multifractal detrended fluctuation
analysis (MFDFA), introduced by Kantelhardt et al. in
[23]. In the MFDFA one considers the profile, i.e., the
cumulated data series Yj �

Pj
i�1�xi � hxi�, and splits the

record intoNs (nonoverlapping) segments of size s. In each
segment k a local polynomial fit yk�j� of, e.g., second order
is estimated. Then one determines the variance F2

k�s� �
�1=s�

Ps
j�1�Y��k�1�s�j� � yk�j��

2 between the local trend
and the profile in each segment k and calculates a gener-
alized fluctuation function Fq�s�,

 Fq�s� 	
�

1

Ns

XNs
k�1

�F2
k�s��

q=2

�
1=q
: (2)

In general, Fq�s� scales with s as Fq�s� � sh�q�. The gen-
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eralized Hurst exponent h�q� is directly related to the
scaling exponent ��q� defined by the standard partition
function-based multifractal formalism, via ��q� �
qh�q� � 1. For a monofractal record, h�q� is independent
of q. For stationary records, h�2� is related to the autocor-
relation function Cx�s�. In the absence of linear correla-
tions [where Cx�s� � 0 for s > 0], h�2� � 1=2.

In general, h�q� depends on both the distribution of the
data and their correlation structure [23]. To eliminate the
dependence on the log-normal tailed distribution, we have
first ranked the N numbers in the multifractal data, and
then exchanged them rankwise by a set of N numbers from
a Gaussian distribution. Now the deviations of the resulting
h�q� from h�2� depend only on the nonlinear correlations
and therefore can be used to characterize them. It can be
easily seen that this procedure conserves, for a fixed return
period RQ, the arrangement of the return intervals as well
as their statistics, since the temporal arrangement of the
values of the original data remains unchanged. Figure 1(a)
displays Fq�s�=s

1=2 for q � 1, 2, and 5. The double-
logarithmic plot shows that Fq�s� follows the anticipated
power-law scaling, with different exponents for the differ-
ent values of q. For q � 2, Fq�s�=s1=2 has reached a
plateau, i.e., h�2� � 1=2, indicating the absence of linear
correlations in the data. To show this feature explicitly, we
also calculated directly the autocorrelation function Cx�s�.
The inset in Fig. 1(a) shows that (as expected) Cx�s�
fluctuates around zero for all s 
 1.

In the following, we focus on the return intervals be-
tween subsequent events above some threshold Q, which
we obtain directly from the original data. Figure 1(b)
shows the PDF of the return intervals for RQ � 10, 70,
and 500. For all return periods, we find a pronounced
power-law behavior

 PQ�r� � �r=RQ�
���Q�; (3)

in marked contrast to the uncorrelated or long-term corre-
lated monofractal data sets. The exponent � [shown in
Fig. 1(c)] depends explicitly on RQ and seems to converge
to a limiting curve for large data sets. When shuffling the
multifractal data set, the nonlinear correlations are de-
stroyed and the scaled PDFs collapse (as expected) to a
single exponential [also shown in Fig. 1(b)].

Next, we study the way the return intervals are arranged
in time. Figure 1(d) shows the autocorrelation function
CQ�s� [24] of the return intervals for RQ � 10, 70, and
500. While Cx�s� 	 0 for s 
 1, CQ�s� decays by a power
law,

 CQ�s� � s���Q�; (4)

indicating long-term correlations among the return inter-
vals. Figure 1(d) shows that the exponent � increases
monotonically with RQ, � � 0:47, 0.56, and 0.7 for RQ �
10, 70, and 500, respectively. Obviously, these long-term
correlations have been induced by the nonlinear correla-

tions in the multifractal data set. Extracting the return
interval sequence from a data set is a nonlinear operation,
and thus the return intervals are influenced by the nonlinear
correlations in the original data set. Accordingly, the return
intervals in data sets without linear correlations are sensi-
tive indicators for nonlinear correlations in the data sets.

To further quantify the memory among the return inter-
vals, we consider the conditional return intervals; i.e., we
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FIG. 1 (color online). Analysis of the multifractal cascade
model: (a) MFDFA fluctuation function for q � 1 (�), 2 (�),
and 5 (�). The autocorrelation function Cx�s� of the data is
shown in the inset. (b) Scaled PDFs PQ�r� of the return intervals
for return periods RQ � 10 (�), 70 (�), and 500 (�). To avoid
overlapping, symbols were shifted downwards by a factor of
10 (�) and 100 (�). The relevant filled symbols show the
corresponding PDFs for the shuffled data, shifted downwards
by a factor of 104. (c) Exponents ��Q� vs RQ, for different
systems sizes N � 216 (�), 221 (�), and 226 (*). (d) Return
intervals autocorrelation function CQ�s� for the same RQ values
as in (b). (e) Conditional return periods RQ�r0� in units of RQ vs
r0=RQ for the same RQ values as in (b) (�), The filled symbols
are for the shuffled data. The curves for RQ � 70 and 500 were
raised by a factor of 10 and 100, respectively, to avoid over-
lapping symbols. (f) Exponents ��Q�, for the same systems sizes
as in (c). The results in (a), (b), (d), and (e) are based on data sets
of length N � 221 and averaged over 150 configurations.
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regard only those intervals whose preceding interval is of a
fixed size r0. In Fig. 1(e) the conditional return period
RQ�r0�, which is the average of all conditional return
intervals for a fixed threshold Q, is plotted versus r0=RQ
(in units of RQ). The figure demonstrates that, as a con-
sequence of the memory, large return intervals are rather
followed by large ones, and small intervals by small ones.
In particular, for r0 values exceeding the return period RQ,
RQ�r0� increases by a power law,

 RQ�r0� � r
��Q�
0 for r0 >RQ; (5)

where the exponent � approximately decreases logarithmi-
cally with increasing value ofRQ [Fig. 1(f)]. Note that only
for an infinite record the value of RQ�r0� can increase
infinitely with r0. For real (finite) records, there exists a
maximum return interval which limits the values of r0, and
therefore RQ�r0�. As well as for PQ�r� and CQ�s�, there is
no scaling, and accordingly, the occurrence of extreme
events cannot be deducted straightforwardly from the oc-
currence of smaller events. When shuffling the original
data, the memory vanishes and RQ�r0� 	 RQ, indicated
by the filled symbols.

A central quantity in risk estimation is the probability
WQ�x; �x� that, after an elapsed time x from the last event
aboveQ, the next event aboveQwill occur within a (short)
time interval �x
 RQ. By definition, WQ is given by

 WQ�x; �x� �

R
x��x
x PQ�r�drR
1
x PQ�r�dr

: (6)

For uncorrelated records, WQ � 1� exp��x=RQ� ’
�x=RQ, independent of x. Since due to the nonlinear
correlations in the multifractal data set PQ�r� decays ap-
proximately by a power law, it can be shown straightfor-
wardly that WQ�x; �x� decays as

 WQ�x; �x� ’ ���Q� � 1�
�x
x
� ���Q� � 1�

�x=RQ
x=RQ

; (7)

which we also verified numerically. As expected, due to the
multifractality, WQ does not scale with RQ, but the explicit
Q dependence occurs solely in the prefactor ���Q� � 1�
and can be estimated. Accordingly, in the absence of linear
correlations in the original data set, the nonlinear correla-
tion allows for a considerably improved risk estimation.
The estimation can be further improved by considering the
conditional distribution function PQ�rjr0� instead of PQ�r�.

We like to note that we obtained similar results also for
the multifractal random walk model [25] which constitutes
another important class of multifractal models. A detailed
comparison of the results will be presented elsewhere.

To show that the effects found here can be observed
in real world data sets, we have considered financial rec-
ords. It is well known that the arithmetic returns �Pi �
Pi�1�=Pi�1 of daily stock closing prices Pi form multi-

fractal data sets, with vanishing autocorrelation function
[17,26,27]. We have analyzed several stocks (IBM, GM,
GE, Boeing, etc.), exchange rates versus U.S. dollar (e.g.,
DM, AUS dollar, CAN dollar), oil crude prices (Brent and
WTI), and integral market indices (e.g., Dow Jones and
S&P 500), with qualitatively identical results. As a repre-
sentative example we focus on the IBM record from
January, 1962, until February, 2007 [28]. First, to compare
the MFDFA results with the simulated data, we exchange
the returns by Gaussian data by conserving the rank order-
ing, as we did for the model data. The result is displayed in
Fig. 2(a). The dashed lines correspond to the simulated
data, with a record length comparable to the length of the
IBM data set. The inset shows the (vanishing) autocorre-
lation function for the IBM returns.

The figure shows that the nonlinear correlations mea-
sured by Fq�s� are modeled quite well by (1). Thus we
expect that the return intervals will show a similar behav-
ior, too. This is shown in Figs. 2(b)–2(d), where for several
values of RQ the PDF PQ�r�, the autocorrelation function
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FIG. 2 (color online). Analysis of the arithmetic returns of
IBM daily stock closing prices (open symbols), and simulated
multifractal data of similar length N � 214 (dashed lines), aver-
aged over 500 configurations: (a) MFDFA fluctuation function
for three moments q � 1 (�), 2 (�), and 5 (�). The autocorre-
lation function Cx�s� of the IBM returns is shown in the inset.
(b) Scaled PDFs PQ�r� of the return intervals versus r=RQ for
RQ � 10 (�), 30 (4), and 70 (�). To avoid overlapping,
symbols were shifted downwards by a factor of 10 (4) and
100 (�). (c) Autocorrelation function CQ�s� of return intervals
�rj� for RQ � 10 and 30 [symbols correspond to those in (b)].
(d) Conditional return periods RQ�r0� in units of RQ vs r0=RQ for
the same RQ values as in (c). The curve for RQ � 30 was raised
by a factor of 10 to avoid overlapping symbols.

PRL 99, 240601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
14 DECEMBER 2007

240601-3



CQ�r�, and the conditional return periods RQ�r0� of the
return intervals are shown and compared with the model
data of similar length (shown as dashed lines) averaged
over 500 configurations each. The agreement between
observed and model data is striking. As in Fig. 1(b) the
PDFs decay approximately by a power law, with different
exponents for different values of RQ. Because of the com-
parably short data set of the IBM data set, finite-size effects
are considerably stronger than for the model data, leading
to deviations from the power law at smaller return intervals
than in Fig. 1(b). Also the autocorrelation function CQ�s�
behaves qualitatively the same as the model data [see
Fig. 1(c)] but due to less statistics finite-size effects are
more pronounced. The conditional return periods shown in
Fig. 2(d) agree very well with the model data, but due to
less statistics very large values of r0=RQ cannot be tested.
We like to note that PQ�r� and RQ�r0� for several financial
data sets for negative thresholds Q have been studied by
Yamasaki et al. [29], but different conclusions regarding
scaling and functional forms have been drawn.

In summary, we have studied the return intervals in
multifractal data sets without linear correlations. We found
that due to the inherent nonlinear correlations in the data,
the relevant quantities characterizing the return intervals
(autocorrelation function, PDF, and conditional return pe-
riod) exhibit (nonuniversal) power-law behavior with ex-
ponents depending explicitly on the height of the threshold.
We have demonstrated that these features, which can be
observed in economic records, allow for an improved risk
estimation.

Finally, we like to emphasize that similar consequences
of nonlinear correlations should be looked after also in the
other data sets that are known to be multifractal, e.g.,
turbulence [30], rainfall [15,16], river flows [31], teletraffic
in large networks [32], physiology [33], and also in persis-
tent data sets in condensed matter physics [11].
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