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We investigate the propagation of spin excitations in a one-dimensional ferromagnetic Bose gas. While
the spectrum of longitudinal spin waves in this system is soundlike, the dispersion of transverse spin
excitations is quadratic, making a direct application of the Luttinger liquid theory impossible. By using a
combination of different analytic methods we derive the large time asymptotic behavior of the spin-spin
dynamical correlation function for strong interparticle repulsion. The result has an unusual structure
associated with a crossover from the regime of trapped spin wave to an open regime and does not have
analogues in known low-energy universality classes of quantum 1D systems.
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Quantum interacting one-dimensional systems have for
many decades been a subject of ceaseless interest of both
theorists and experimentalists. This is mainly because of
the unique role of quantum fluctuations, which are so
strong in 1D that even for weakly interacting systems the
intuition based on the free-particle picture and the mean
field theory fails and the effects of strong correlations
become important [1]. Such effects have been encountered
in many experiments dealing with 1D conductors, like,
e.g., organic salts, quantum wires, or carbon nanotubes,
in which the constituent particles, electrons, are spin 1=2
fermions.

Recent advances in the creation and manipulation of
ultracold atomic gases [2] opened an access to a new class
of 1D systems where the constituent particles obey bosonic
statistics [3–7] and have a variable number of internal
(‘‘spin’’) states [8–10]. In the spinless case the theory
predicts an equivalence between the Bose and Fermi sys-
tems: both are described by the Luttinger liquid (LL)
theory at low energies [1]. In the presence of spin the
situation is more complex. The necessary condition for
the applicability of the LL theory is the linearity of the
dispersion of low-lying elementary excitations "�p� � jpj.
This is usually the case for fermions, which have a natural
tendency to antiferromagnetic ordering [11]. While under
special conditions linear dispersion relations, and, conse-
quently, the LL physics can be encountered in a multicom-
ponent Bose system [13], there exists a broad range of
Hamiltonians, in particular, those with spin-independent
interactions, whose ground state is ferromagnetic [14]. In
the latter case the softest low-lying excitation is the mag-
non with a quadratic dispersion relation

 "�p� ’ p2=2m�; p! 0; (1)

where m� is an effective mass. This makes the straightfor-
ward application of the LL theory impossible and poses a
fundamental question of finding an alternative theory de-
scribing the dynamics of the low-energy excitations in a 1D
boson ferromagnet.

In this Letter we tackle this issue and compute the long-
distance properties of two-point correlation functions of
local spins at zero temperature. Focusing on the region of
strong interparticle repulsion, we show that the dynamical
properties of spin excitations in a 1D ferromagnetic Bose
gas are neither those of a localized ferromagnet nor of a
Luttinger liquid, pointing at the existence of a new low-
energy universality class. Our main results are presented in
Eqs. (13) and (14). We also discuss the connection of our
work with the problems of a moving impurity in a LL,
dynamics of a hole in the Hubbard-Mott insulator, and
quantum mechanics in a dissipative environment. Finally,
we describe recent experimental realizations [8–10] of
quasi-1D Bose gases with spin.

For simplicity of presentation the derivations are carried
out for two-component bosons; the generalization to higher
spins is straightforward [15]. We assume that the interac-
tion between the particles is spin-independent and the
model Hamiltonian has the form

 H �
XN
j�1

p2
j

2m
�
X
i<j

�g��xi � xj� �U�xi � xj�	 � hSz: (2)

Here m is the mass of a boson, h is the external magnetic
field, and Sz is the z component of the total spin. We are
interested in the limit of infinite number of particles, N !
1, and of infinite system size, L! 1, at a fixed particle
density, �0 � N=L. Although for cold atoms the interac-
tion potential is well approximated by a � function, we
allow for a more general interaction g��x� �U�x�, where
U�x� is some smooth function. The strength of the short-
range repulsion is characterized by a dimensionless cou-
pling constant � � mg=@2�0. For U � 0 the Hamiltonian
(2) can be diagonalized by Bethe ansatz (BA) [16], provid-
ing us with a valuable source of intuition about the low-
energy dynamics studied here.

The global spin operator S � �Sx; Sy; Sz� can be repre-
sented as
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 S �
Z L

0
dxs�x�; s�x� �

1

2

XN
j�1

��j���x� xj�; (3)

where ��j� � ��x; �y; �z� is the vector composed of the
three Pauli matrices acting nontrivially on the spin indices
of the jth particle. Spin-ladder operators s
�x� � sx�x� 

isy�x� flip the z component of a local spin. For h > 0 the
Hamiltonian (2) has a nondegenerate ground state, j *i,
which is fully polarized along the z axis, s��x�j *i � 0.
The degeneracy appears at h � 0 and is discussed in detail
in Ref. [14]. We investigate the dynamics of excitations
over the state j *i. For simplicity of the presentation, our
results are given for h � 0. In the case of h � 0 the right-
hand side of Eqs. (6) and (13) should be multiplied by the
oscillating factor eith.

Our main object of interest is the response of the system
to weak perturbations of local magnetization, encoded into
two correlation functions:

 Gk�x; t� � h*jsz�x; t�sz�0; 0�j*i (4)

 G?�x; t� � h*js��x; t�s��0; 0�j*i (5)

describing the longitudinal, Fig. 1(a), and transverse,
Fig. 1(b), spin dynamics, respectively. The longitudinal
dynamics over the state j*i coincides with that of density
fluctuations in the 1D spinless Bose gas. Their dispersion is
linear in the low-energy limit; therefore, the x; t! 1
asymptotics of Eq. (4) can be calculated within the LL
theory [1], and decays as a power law [17].

In contrast to the longitudinal dynamics, transverse spin
waves are not sound waves, their dispersion is quadratic at
low momenta, Eq. (1). The effective mass m� in Eq. (1)
increases with increasing �. In the BA solvable case m�
can be calculated exactly [18] and shows a linear diver-
gence with � in the limit of strong repulsion: m�=m ’
3�=2�2 as �! 1. This divergency was pointed out in
Ref. [18] as a signature of a slow dynamics of transverse
spin waves at large �. We show here that in the strong
coupling regime the effects are even more dramatic. To see
this, we start with the description of the long-wavelength
limit of Eq. (5) at � � 1.

Qualitatively, the propagation of the transverse spin
excitation at � � 1 can be described as follows: the
operator s��0; 0� flips a spin of a given particle, shown in
Fig. 1(c) with a down arrow. Because of the infinite re-
pulsion, the spin-down particle cannot exchange its posi-
tion with its neighbors, so it is trapped inside an interval of
average length 2��1

0 . However, since the spin-up particles
are mobile, the size and the position of this interval can
fluctuate, making it possible for the spin-down particle to
be detected at a distance larger than ��1

0 from its initial
position. Such fluctuations require a simultaneous dis-
placement of a large number of spin-up particles; thus,
the probability to observe the spin-down particle at a large
distance from the point where it was created must be small.
The correlation function (5) should thus decay very rapidly
with distance.

To quantify the above argument we obtain the analytic
expression for the long-wavelength asymptotics of Eq. (5).
The calculations are performed using, as in Ref. [19], a
combination of bosonization with a first-quantized path
integral. For the BA solvable case they can be underpinned
by the asymptotic analysis of the determinant representa-
tion of the correlation functions along the lines of
Refs. [20,21]. We give only the result here, the details
will be presented elsewhere [15]. The asymptotic form of
G?�x; t� is given for t� tF by

 G?�x; t� ’
1����������������

ln�t=tF�
p exp

�
�

1

K
���0x�2

2 ln�t=tF�

�
: (6)

It is similar to the diffusion propagator except that the
mean square deviation grows logarithmically with time.
This logarithmic diffusion is the mathematical manifesta-
tion of the spin trapping effect. The parameter tF controls
the smallest time scale in the problem:

 tF �
@

EF
; EF �

@
2

2m
���0�

2: (7)

The physical meaning of tF can be understood from the
fact that the spectrum of the �-interacting spinless bosons
at � � 1 is the same as that of free spinless fermions.
Therefore, EF in Eq. (7) plays the role of a Fermi energy,
and tF is the time scale for the longitudinal spin fluctua-
tions. The dimensionless parameter K in Eq. (6) is the
Luttinger parameter, which can be calculated from the
thermodynamic properties of the system [1]. Note that
for U � 0 one has K � 1 and K ! 1 only at �! 1.

Equation (6) is obtained for � � 1. For large but finite
� there is a small probability that spin-up and spin-down
particles exchange their positions, allowing the spin exci-
tation to escape from the trap. We estimate the escape time
t� by replacing the fluctuating gas of spin-up particles by a
static Kronig-Penney lattice with period ��1

0 and get t� �
�tF. Thus, for large � the escape time is parametrically
large and there exists a broad window tF  t t� where
G?�x; t� has the asymptotics form (6).

FIG. 1. A 1D array of particles carrying spin. The propagation
of longitudinal (a) and transverse (b) spin waves over the fully
polarized state j*i is depicted. The state obtained by the action of
the spin lowering operator s��0; 0� onto j*i is schematically
illustrated in (c).
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For t * t�, there is a crossover to another, ‘‘open,’’
regime, which we investigate next. A rather general result
can be obtained from a minimal set of assumptions on the
analytic properties of the spectral function A�k;!�. By
definition,

 G?�x; t� �
Z dk

2�
eikx

Z d!
2�

e�i!tA�k;!�; (8)

with

 A�k;!� �
X
�

��@!� E��k��jh�; kjs��k�j *ij2: (9)

Here Hj�; ki � E��k�j�; ki and � enumerates all the states
with a given momentum @k. Among these states there is a
state of a minimal energy "�k�; that is, "�k� � min�E��k�.
Our first assumption, supported by the calculations for the
BA solvable case [15], where "�k� can be found explicitly,
and variational considerations in the spirit of the Feynmann
single-mode approximation is that at small p � @k the
function "�k� has the form (1). Therefore, "�k� defines
the threshold frequency for the spectral function:
A�k;!� � 0 for @!< "�k�. Above the threshold a contin-
uum of states contributes to A�k;!�. They contain one
magnon (spin-flip) and multiple plasmon (density) excita-
tions close to zero momentum. The large t asymptotics of
Eq. (8) is dominated by the scale-free part of the spectral
function at the threshold, whose most generic form is

 A�k;!� ’ c�k��@!� "�k�	��k�; @! � "�k�; (10)

where ��k� and c�k� are some functions of k.
Our second assumption is that both c�k� and ��k� are

analytic functions of momentum in the vicinity of k � 0.
Taking into account the inversion symmetry, G?�x; t� �
G?��x; t�, which implies A�k;!� � A��k;!�, the general
form of c�k� and ��k� should be

 ��k� � �� 1� �k2 � � � � ; (11)

 c�k� � c0 � c1k2 � � � � ; (12)

where �, �, c0, and c1 are some model-dependent coef-
ficients. We substitute Eqs. (10)–(12) into Eq. (8), and for
the function "�k� entering Eq. (10) we use formula (1) with
p � @k. The saddle point analysis of the resulting expres-
sion leads to our main result:

 G?�x; t� ’ t��
�
� ln

�
t
tF

�
�
it@

2m�

�
�1=2

� exp
�

im�x2

2t@� 4i�m� ln�t=tF�

�
: (13)

Equation (13) contains two parameters, � and �, which
depend on both � and U. This dependence cannot be
extracted from the scaling and analyticity assumptions,
Eqs. (10) and (11). However, we can find � and � in the
trapped regime, � � 1, by letting m� � 1 in Eq. (13) and

comparing the resulting expression with Eq. (6). We get

 � � 0; � �
K

2���0�
2 (14)

at � � 1. In addition, forU � 0 we could treat the case of
large but finite � by BA and show that Eq. (13) remains
valid [15]. Whether this is an artifact of integrability or a
generic property of the model is an important open ques-
tion. The latter would mean that the asymptotic behavior of
the correlation functions in the ferromagnetic case is com-
pletely determined by thermodynamic properties of the
system, like in the LL theory.

If m� <1, Eq. (13) coincides with (6) for sufficiently
small times, 2t@ 4�m� ln�t=tF�. At a time t� when this
relation becomes an equality a crossover to an open regime
occurs [22]. For U � 0 the dependence of t� on � can be
found explicitly:

 t� ’
3�K

4�2 ln
�
3�K

4�2

�
tF: (15)

We stress that this estimate is valid if � is large enough to
ensure t� � tF. This confirms and completes our naive
estimate of t� given in the paragraph below Eq. (6).

In the open regime, t * t�, the function (13) factorizes
into a product of the transverse spin correlation function of
the localized Heisenberg ferromagnet, GH

?, exhibiting
exchange-induced oscillations, and a rapidly decaying fac-
tor, which we attribute to the excitation of the charge
degrees of freedom:

FIG. 2 (color online). Shown is the intensity plot of
t� ReG?�x; t� in the x; t plane at � � 100. The spin wave is
strongly suppressed at a distance x� ‘�t�, Eq. (16), long before
it reaches the light cone, x � vt, shown as dashed green lines.
The onset of the spin precession is seen in the space oscillations
of t� ReG? developing above the crossover time t� ’ 15tF,
shown by the white dotted line.
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 G? ’ e
��x2=2‘2�t��GH

?; ‘�t� �
2K��1=2�

��0

t=tF�������������
lnt=tF

p m
m�

:

(16)

The strong suppression of G? for x > ‘�t� ensures the
absence of the light-cone singularities at x � vt, where v
is the sound velocity for the charge excitations, v �
@��0=m for � � 1. This is illustrated in Fig. 2.

We now discuss the relation of our work to several
previously studied problems. The threshold singularity,
Eq. (10), of A�k;!� is identical to the Fermi edge singu-
larity in a 1D quantum fluid with a mobile impurity [23–
25] in a special case of equal impurity and host particles
masses. Our results, therefore, have interesting implica-
tions for the latter problem. In particular, the relation of
��k� to the parameters of the model has only been under-
stood at k � 0 [23,24]. The finite k case was addressed in
Ref. [25] by using an effective field theory. We, however,
found that ��k� calculated from Ref. [25] disagrees with
our Eqs. (11) and (14). In particular, it does not reproduce
Eq. (6), which we obtain by two independent methods [26].
There is also an analogy with the problem of a mobile hole
in a 1D Hubbard-Mott insulator [27]. There the parabolic
branch of spectrum is due to holon excitations, while the
gapless mode with a linear dispersion corresponds to spi-
nons. The spectral function given by Eq. (3) of Ref. [27]
shows the same critical properties as A�k;!�, Eqs. (10) and
(11). We thus hope that the results presented in this Letter
can be extended to a broader class of models. Finally, by
bosonizing the gas of spin-up particles one maps the
Hamiltonian (2) onto that of a quantum particle nonlinearly
coupled to a harmonic environment. A linearized version
of this problem was studied in Refs. [28,29], and the
comparison of the long-time asymptotics remains an
open question.

Experiments on quasi-1D Bose gases with internal de-
grees of freedom started recently [8–10]. In the experi-
ment [8] a pseudospin 1=2 system was created by loading
87Rb atoms into a highly elongated magnetic trap and
selecting two hyperfine states, jF � 1; mF � �1i and
jF � 2; mF � 1i, while in [9,10] the true spin 1 system
was created by loading 87Rb atoms into a highly elongated
optical trap and selecting the states composing F � 1 spin
triplet. In both [8–10] long-lived fully polarized states
were achieved and a possibility to excite and image
(pseudo)spin waves in real space and time was demon-
strated. Although in the above experiments the systems
were not truly 1D (about 50 bands of transverse quantiza-
tion were populated), a possibility to further reduce the
number of occupied bands is suggested by the successes in
the creation of 1D spinless systems [3–7], thus paving the
way to the investigations of the ferromagnetism in 1D Bose
gases.
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