Comment on "Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars"

In their Letter [1] (also [2]), Srianand *et al.* analyzed optical spectra of heavy-elements in 23 absorbers along background quasar sight lines, reporting limits on variations in the fine-structure constant, $\alpha: \Delta \alpha / \alpha = (-0.06 \pm 0.06) \times 10^{-5}$. This would contradict previous evidence [e.g., [3,4]] for a smaller α in the absorption clouds compared to the laboratory: $\Delta \alpha / \alpha = (-0.57 \pm 0.11) \times 10^{-5}$ [5]. Here we demonstrate basic flaws in the analysis of [1] using the same data and absorption profile fits.

For each absorber, $\Delta \alpha / \alpha$ is measured using a χ^2 minimization of a multiple-component Voigt profile fit to the absorption profiles of several transitions. The column densities, Doppler widths and redshifts defining the components are varied iteratively until the decrease in χ^2 between iterations falls below a specified tolerance, $\Delta \chi^2_{tol}$. In our approach, we simply add $\Delta \alpha / \alpha$ as an additional free parameter whereas [1] keep it as an external one: for each fixed input value of $\Delta \alpha / \alpha$ the other, free parameters are varied to minimize χ^2 . The functional form of χ^2 implies that, in the vicinity of the best-fitting $\Delta \alpha / \alpha$, the " χ^2 curve"—the value of χ^2 as a function of $\Delta \alpha / \alpha$ —should be near parabolic and smooth. That is, $\Delta \chi^2_{tol}$ should be $\ll 1$ to ensure that fluctuations on the χ^2 curve are also $\ll 1$. This is crucial for deriving the 1- σ uncertainty in $\Delta \alpha / \alpha$ from the width of the χ^2 curve at $\chi^2_{min} + 1$. However, none of Srianand *et al.*'s χ^2 curves—Fig. 2 in

However, none of Srianand *et al.*'s χ^2 curves—Fig. 2 in [1], 14 in [2]—are smooth at the \ll 1 level; many fluctuations exceed unity. Two examples are reproduced in Fig. 1. The fluctuations can only be due to failings in the χ^2 minimization: even when [2] fit *simulated* spectra (their Fig. 2) jagged χ^2 curves result, leading to a strongly non-Gaussian distribution of $\Delta \alpha / \alpha$ values and a large range of 1- σ uncertainties (their Fig. 6). Clearly, these basic flaws in the parameter estimation will yield underestimated uncertainties and spurious $\Delta \alpha / \alpha$ values.

To demonstrate these failings, we apply the *same profile fits* to the *same data* but with a robust χ^2 minimization. The spectra were kindly provided by Aracil who confirmed that the wavelength and flux arrays are identical to those in [1]. For each absorber, the best-fitting profile parameters of [2] were treated as first guesses in our χ^2 minimization procedure (detailed in [4]). The relationships between the Doppler widths of corresponding velocity components in different transitions were also the same, as were the relevant atomic data. The relative tolerance for halting the χ^2 minimization was $\Delta \chi^2_{tol}/\chi^2 = 2 \times 10^{-7}$. All absorbers yield smooth χ^2 curves in new our analysis; Fig. 1 shows two examples.

FIG. 1 (color online). Example χ^2 curves from our minimization (circles) and that of [1] (triangles). Fluctuations in the latter indicate failings in the minimization. Points and error bars indicate best-fitting values and 1- σ uncertainties; for our curves $\Delta \alpha / \alpha$ was a free parameter. Note the different vertical scales: left-hand scales for our curves, right-hand scales for [1].

By products of this analysis are revised values of $\Delta \alpha / \alpha$ and 1- σ errors. We find 14 of the 23 $\Delta \alpha / \alpha$ values deviate by $>0.3 \times 10^{-5}$ from those of [1]. Moreover, the errors are almost always larger, typically by a factor of ~ 3 . The formal weighted mean over the 23 absorbers becomes $\Delta \alpha / \alpha = (-0.44 \pm 0.16) \times 10^{-5}$ but the scatter in the values is well beyond that expected from the errors. This probably arises from many sources, including overly simplistic profile fits (see [6]). Allowing for additional, unknown random errors by increasing the error bars to match the scatter (i.e., $\chi^2_{\nu} = 1$ about the weighted mean), a more conservative result from the data and fits of [1] is $\Delta \alpha / \alpha = (-0.64 \pm 0.36) \times 10^{-5}$ a sixfold larger uncertainty than quoted by [1]. We conclude that the latter offers no stringent test of previous evidence for varying α ; this must await a future, extensive statistical approach.

```
M. T. Murphy,<sup>1,2</sup> J. K. Webb,<sup>3</sup> and V. V. Flambaum<sup>3</sup>
<sup>1</sup>Centre for Astrophysics & Supercomputing
Swinburne University of Technology
Victoria 3122, Australia
<sup>2</sup>Institute of Astronomy
University of Cambridge
Madingley Road
Cambridge CB3 0HA, United Kingdom
<sup>3</sup>School of Physics
University of New South Wales
Sydney, NSW 2052, Australia
```

Received 24 August 2007; published 6 December 2007 DOI: 10.1103/PhysRevLett.99.239001 PACS numbers: 98.80.Es, 06.20.Jr, 98.62.Ra

- [1] R. Srianand et al., Phys. Rev. Lett. 92, 121302 (2004).
- [2] H. Chand et al., Astron. Astrophys. 417, 853 (2004).
- [3] J. K. Webb *et al.*, Phys. Rev. Lett. **82**, 884 (1999).
- [4] M. T. Murphy *et al.*, Mon. Not. R. Astron. Soc. **345**, 609 (2003).
- [5] M.T. Murphy et al., Lect. Notes Phys. 648, 131 (2004).
- [6] M. T. Murphy et al., arXiv:astro-ph/0612407.