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In a variety of situations, isolated polymer molecules are found in a vacuum, and here we examine their
properties. Angular momentum conservation is shown to significantly alter the average size of a chain and
its conservation is only broken slowly by thermal radiation. For an ideal chain, the time autocorrelation for
monomer position oscillates with a period proportional to chain length. The oscillations and damping are
analyzed in detail. Short-range repulsive interactions suppress oscillations and speed up relaxation, but
stretched chains still show damped oscillatory correlations.
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The properties of polymer chains have been investigated
extensively over the past 50 years [1], but the vast majority
of these studies have been concerned with situations where
they are in a solution or melt. However, there are some
situations where polymer molecules are essentially in a
vacuum. Below are some possible situations where poly-
mers in this state might prove very interesting to inves-
tigate further.

The desorption and ionization of polymers, often by
lasers, are carried out during mass spectrometry, in order
to characterize proteins and have many important biologi-
cal applications [2]. Such desorbed chains often carry
charge and move freely through empty space. In this
situation they will respond strongly to electromagnetic
radiation in the frequency range of their internal dynamics,
and therefore their internal properties could in this way be
probed. This extra information has potential for improving
this important technique.

Although at present it is difficult, it might also prove
possible to use optical tweezers on biomolecules such as
DNA in a vacuum, analogous to what is now done in
aqueous solution, and measure the spectrum of Brownian
motion [3], providing detailed information on the poly-
mer’s dynamics. Additionally it might be possible to sus-
pend DNA over a ‘‘trench’’ in a manner analogous to what
has been done with nanotubes [4].

Polymers of many kinds have been detected in interstel-
lar media [5] and although they have been predominantly
less than 10 units, the detection of new species requires
theoretical models to fit spectroscopic data. Thus modeling
longer chains is useful in this regard.

In addition, we will show that the study of polymers
without solvent present sheds light on the problem of
internal or Cerf friction [1,6] of polymers, a fundamental
and still poorly understood phenomenon.

To aid in the possible experimental observation of such
systems, some basic properties of isolated polymers in a
vacuum are considered here. The first question that we ask
is how their statistics are modified from those in solution.
Solvents will compete with intrachain attractions so that

above the � temperature [1], a polymer chain will be
swollen. Without the solvent present, this would imply
that a chain at the same temperature would be collapsed.
But at high enough temperatures, entropy will dominate
over energy, and a polymer, just like a liquid, will then
want to expand into a gas, or self-avoiding phase. Because
carbon-carbon bonds are very strong, it might then be
possible to find some species where a polymer will become
swollen in isolation for long enough periods of time to be
observable. Even if it turns out that this is not possible,
polymers through desorption often carry charge, for ex-
ample, in mass spectroscopy, and this additional Coulomb
repulsion is quite substantial; at 500 K it is �33kBT for
two electrons 1 nm apart. This will serve to stretch a chain.

It might then appear that the statistics of such a system
are identical to that of a chain in a solvent, with some
modification of interaction parameters. However, one im-
portant difference is the conservation of angular momen-
tum that we might expect to see in this case as opposed to a
polymer in a solvent. In statistical mechanics, this conser-
vation law is ordinarily ignored and is not expected to
make a difference to system properties when the number
of degrees of freedom is large. However, we will see that
for a polymer in isolation it has a significant effect on its
size, even when the total angular momentum is zero. The
effects of angular momentum conservation have been re-
cently studied in self-gravitating systems [7] where it leads
to different phases for some models for finite angular
momentum.

The starting point for this situation is the formula for the
classical entropy of N monomers with coordinates
r1; . . . ; rN interacting with potential energyU in the micro-
canonical ensemble with conservation of total linear ptot �
0, the center of mass rc:m: � 0, and total angular momen-
tum L held constant [7]. The formula for the entropy, in
addition to the usual � function energy constraint, has �
function constraints on ptot and L. We can, for large N,
transform this into the canonical ensemble at temperature
T, by showing in the usual way that the fluctuations in the
energy per particle at constant temperature are /1

����
N
p

[8].
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We wish to calculate the rms size of a chain when rc:m: �
0: hR2i � 1

N h
PN
i�1 r

2
i i. For an ‘‘ideal’’ chain [9] with ring

topology, the calculation can be done exactly [10] for large
N. The � function constraints are expressed as Fourier
integrals by introducing auxiliary variables for integration.
The ones associated with ptot are trivially handled, whereas
the more interesting constraint is L conservation. This
leads to the partition function

 Z�T;L� /
Z
eik�Le��T=2��k�I�k���U��rc:m:�

YN
i�1

d3rid3k;

(1)

where I is the moment of inertia tensor of a polymer
conformation. Now consider the r integrations. Using
spherical symmetry we can choose k to be along the z
direction and these integrals can be turned into functional
integrals that look identical to quantum harmonic oscilla-
tors but with the zeroth mode (rc:m:) constrained to zero.
Adding a term �

P
ir

2
i to �U allows one to differentiate

lnZ with respect to � to obtain hR2i. The results are shown
in Fig. 1. The rescaled angular momentum is L0 �
L

������
12
p

=�Nl
�������������
mkBT
p

�, where m is the mass and l is the step
length. The probability distribution for L0 at temperature T,
P�L0� is also shown on a log scale. The fact L0 / L=N can
be understood intuitively because a typical value of
L2=�2I� � T. A typical value of I � �Nm�hR2i � N2.
Thus the scale for L is / N.

At L � 0, hR2i=�Nl2� � �1	 15=�2�=36 � 0:0700.
Results using a simulation method described below give
0.071 which are the same to within the error bars. This is
substantially below, 1=12 � 0:083, the value of the same
quantity when conservation of angular momentum is not
enforced. When averaged over all angular momenta, the
size of the chain must agree with the nonconserved case,
and because high L chains will have greatly extended
conformations, this must be compensated for by corre-
spondingly compact configurations for small L.

To obtain the asymptotic behavior for large L, using a
much simpler argument, we expect that in this limit the
dominant configuration of the chain will be a highly

stretched circle of radius R rotating symmetrically about
the axis of angular momentum. We minimize the free
energy, F, of a polymer taking into account both its kinetic
energy and elastic energy yielding R2=�Nl2� � L0=�12��.
This also gives ��F � ��L0 The asymptotic slopes for
the two graphs in Fig. 1 are precisely these values.

The total angular momentum, however, is not conserved.
Interaction with thermal photons will cause the angular
momentum to equilibrate on a time scale that we will now
estimate. First we consider the flux of electromagnetic
energy emitted by a single polymer. The emission of
thermal radiation per unit area of a blackbody is given by
the Stephan-Boltzmann law S � �T4, where � is the
Stephan-Boltzmann constant. However, this greatly over-
estimates the radiation because of the weak efficiency of
small objects in emitting light of a far greater wavelength.
Calculations for metal nanoparticles (which should be
better emitters than dielectric polymers) give a suppression
factor of �2
 10�3 when the nanoparticles are 10 nm in
radius [11]. This gives the ratio of kBT to emitted power
�8
 10�7 s. (More realistically including the effective
dielectric of the low density polymer chain will increase
this by at least another order of magnitude.) We calculate
the relaxation time for self-avoiding chains using the
analysis at the end of this Letter. For a 400 amino acid
protein which should have a comparable radius of gyration,
this gives a relaxation time of �10�9 s. Thus in this
situation, thermal photon equilibration is more than 2
orders of magnitude slower than the time scale for relaxa-
tion of a chain. Therefore, one expects to see transitions in
the time averaged radius of gyration of a chain as photons
are emitted and absorbed by the polymer. This might be
observable in the signature of noise seen in light scattering.

We now turn to a study of the dynamics of these poly-
mers and we see that in this respect, the situation is very
different from that of a polymer in a solvent. In both cases,
the most basic measure of the dynamics is the monomer-
monomer autocorrelation function:

 g�t� �
�

1

N

XN
i�1

jri�t� � ri�0�j2
�
: (2)

We will analyze how we expect this to behave and compare
it with numerical simulations.

We first consider what kind of coarse grained linear
stochastic equation would best approximate the evolution
of r�s; t�, the position of the chain at arclength s, and time t.
One might first guess that sufficient nonlinearity would
introduce strong enough dissipation of individual modes so
that the behavior would be similar to that of the Rouse
model [12], which describes a ‘‘free draining’’ chain. That
is one where individual monomers experience a drag pro-
portional to their velocity _r. However, there can be no such
term as it would violate Galilean invariance, because the
center of mass velocity of a chain would then always drift
to zero. By symmetry, the lowest order damping term must
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FIG. 1 (color online). The variation of the size of a chain
versus its angular momentum for a ideal ring chain (increasing
curve). The log of the thermal distribution for different angular
momenta (decreasing curve).
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be C@3r=@t@2s, where C is a constant. Adding in inertia,
random forcing ��s; t� and chain connectivity gives

 

@2r
@t2
�

�
1	 C

@
@t

�
@2r
@s2 	 ��s; t�: (3)

In terms of each Fourier (or Rouse) eigenmode k along the
arclength of the chain, we can solve for the complex
frequency �k � !k 	 i�k. This gives a damping �k / k2

for small k and !k / k. This means that for long wave-
lengths, damping is much smaller than it would be in
solution. We write the autocorrelation function
hrk�0�r

�
k�t�i � hjrkj

2iRe�exp�i�kt��k=!k
 and because
jrkj

2 is approximately / 1=k2,

 g�t� / Re
X
k

�k�1� exp�i�kt�


!kk2 : (4)

For small t, and no dissipation (�k � 0), the behavior of
g�t� in the above expression can easily be shown to be / t,
the same law as for a diffusive process. For longer times,
the Fourier series shows asymmetric oscillatory behavior,
with cusps at minima and parabolic maxima with a period
/ N. These same qualitative features will persist for small
�k so that for large N, these oscillations will slowly damp
out with a relaxation time / N2.

We now turn to numerical simulations to compare with
our expectations. One-dimensional systems are notorious
for not being able to equilibrate energy well [13], and even
quasi-one-dimensional hard sphere systems [14] exhibit
highly nonlocal time correlations, with universal power-
law decays [15], which is a general result for one-
dimensional chains that are momentum and energy con-
serving [16].

So we first consider the dynamics of a chain neglecting
any self-avoiding interactions, but using an athermal

highly nonlinear model for the reasons just mentioned.
Thus we have chosen a model where monomers of equal
mass are coupled together by links of fixed length, and it is
this rigidity that is the source of the nonlinearity. Aside
from this constraint, there is no potential energy. The
monomers can freely rotate, but there is no coupling to
an outside system so that there is no dissipation or random
noise term. The model rigorously satisfies conservation of
energy, momentum, and angular momentum. An efficient
method for evolving such chains was developed so that
despite the large number of length constraints, the compu-
tation for each time step scales linearly with the number of
monomers. The details will be published elsewhere [10].
The angular momentum, center of mass, and energy were
monitored to ensure that their drifts due to numerical error
remained small for all data used.
g�t� defined in Eq. (2) was calculated for zero angular

momentum chains of different lengths and is displayed in
Fig. 2 for N � 128 averaged over 24 000 runs. The kinetic
energy is set to have an equivalent temperature of 1 and
l � m � 1. This is very unlike the correlation function for
a polymer in solution which shows a smooth slow increase,
not the wildly oscillatory form seen here. This is in quite
good agreement with the above analysis: the period of
oscillations scales as chain length and the short time be-
havior and cusps are also as one would predict. The form of
Eq. (4) was used to fit the numerical data. It is clear from
the data that !k / k, and the damping appears to fit best to
a form close to �k / k2. Fitting this to different chain
lengths, N � 64 and 128, gives a relaxation time Trel /

N�1:85�:15�. Note that in the case of one-dimensional heat
conduction, it has been found that even with highly non-
linear models [15], asymptotic large N behavior is difficult
to study as more than 104 particles must be considered to
get a good estimate of critical exponents. Therefore it is
possible that the exponent found is off by �10% of its
asymptotic value.

This problem is quite similar to that of a one-
dimensional nonlinear chain of particles, which is charac-
terized by long wavelength excitations that slowly deco-
here and a relaxation time Trel / N

3=2 [15,16], which is
different than the polymer case where we found that the
exponent is closer to 2. However, if the polymer chain was
stretched by a constant force so that it was quasi-one-
dimensional, one would expect the same N3=2 scaling for
the relaxation time.

A proposal for internal damping, the third order term of
Eq. (3), has been made before [17] in connection with Cerf
friction [1,18] using a nonrigorous derivation. Adding such
a term to the Rouse equation provides an explanation of
experiments [6] on extensional relaxation of polymers in
solvent. Solvents with different viscosities were considered
and extrapolated to the limit of zero viscosity, and the
results can be interpreted using such a term. This work
lends support to such a mechanism.
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FIG. 2 (color online). The autocorrelation function g�t� as
defined in Eq. (2) for a chain of 128 monomers. Double hori-
zontal lines give the very small error bars. The inset shows the
beginning of the plot at a higher magnification, where the initial
linear increase and cusps are apparent. The time unit is 1,000.

PRL 99, 238301 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 DECEMBER 2007

238301-3



As one might expect, the inclusion of repulsive inter-
actions between monomers suppresses the oscillations that
are seen in the ideal chain. For the sake of efficiency, soft-
core potentials were added between monomers having a
potential of the form �V�r� � 2�1� �r=l�2
5. Statistics of
such chains with total angular momentum of zero were
measured and the size scaling exponent gave 	 � 0:596�
0:01 in good agreement with the well-known three-
dimensional value.

In Fig. 3 the autocorrelation function for these chains,
see Eq. (2), is plotted for chain lengths N � 32, 64, and
128, on scaled axes so that they coincide for short times.
The vertical axis is g�t�=hR2i and the horizontal one is
t=Np, with p chosen to fit short times best. With p �
1:15, the plots coincide well over half of the vertical range,
from 0 to 1. However, the long time behavior forN � 32 is
noticeably above the longer length chains. However, N �
64 is only slightly aboveN � 128, and given the correlated
error bars, this is barely statistically significant. This is
strong evidence that for large N the correlation function
approaches the scaling form g�t� � N2	f�t=Np�, and
therefore the relaxation time for this chain is / Np, with
p � 1:15� 0:05. Note that this is much smaller than that
of the ideal chain discussed above, presumably because
long range interactions along the chain backbone allow
much faster equilibration of energy and momentum. We
expect the time it takes a chain segment to move of order its
average size Rg should be Rg divided by the center of mass
speed for of order half the chain, �N�1=2, which gives
trel � N1:1.

This is in contrast with what happens if charges are
added to both ends. With charged protein molecules cre-
ated during mass spectrometry, a similar situation could

also occur. The inset in Fig. 3 shows the autocorrelation
function for this case, where the end to end distance is 10.0
(l � 1), about one-third of the chain’s arclength. The pa-
rameters were chosen so that there is still a substantial
amount of interaction between neighboring monomers, yet
the chain is quite stretched, which is an experimentally
realistic scenario. Here one can clearly see oscillations in
g�t�, intermediate in behavior between the ideal chain and
interacting cases.

In conclusion, the equilibrium statistics and dynamics of
polymers in a vacuum have many interesting properties.
The addition of angular momentum conservation signifi-
cantly alters chain statistics. The subtle power-law time
correlations found in momentum conserving one-
dimensional systems can lead to dynamics that are oscil-
latory and show unusual scaling properties. It is hoped that
this work will provide an impetus for further experimental
observation of these fascinating systems.

I thank Larry Sorensen for very useful discussions.
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FIG. 3 (color online). The scaled autocorrelation function
g�t�=hR2i versus t=Np, for three chain lengths, N � 32, 64,
and 128 with short-range repulsive interactions. The inset shows
g�t� for an N � 32 chain with equal charges at both ends that
cause it to stretch. Here l � 1.
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