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Noise and spatial degrees of freedom characterize most ecosystems. Some aspects of their influence on
the coevolution of populations with cyclic interspecies competition have been demonstrated in recent
experiments [e.g., B. Kerr er al., Nature (London) 418, 171 (2002)]. To reach a better theoretical
understanding of these phenomena, we consider a paradigmatic spatial model where three species exhibit
cyclic dominance. Using an individual-based description, as well as stochastic partial differential and
deterministic reaction-diffusion equations, we account for stochastic fluctuations and spatial diffusion at
different levels and show how fascinating patterns of entangled spirals emerge. We rationalize our analysis
by computing the spatiotemporal correlation functions and provide analytical expressions for the front
velocity and the wavelength of the propagating spiral waves.
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Understanding the combined influence of spatial degrees
of freedom and noise on biodiversity is an important issue
in theoretical biology and ecology. This implies facing the
challenging problem of studying complex nonequilibrium
structures, which form in the course of nonlinear evolution
[1-6]. More generally, self-organized nonequilibrium pat-
terns and traveling waves are ubiquitous in nature and
appear, for instance, in chemical reactions, biological sys-
tems, as well as in epidemic outbreaks [7]. Among the
most studied types of patterns are spiral waves, which are
relevant to autocatalytic chemical reactions, aggregating
slime-mold cells, and cardiac muscle tissue [8]. In all these
nonequilibrium and nonlinear processes, as well as in
population dynamics models [1,3,5], pattern formation is
driven by diffusion which, together with internal noise, act
as mechanisms allowing for stabilization and coevolution
of the reactants. In this work, we consider a paradigmatic
spatially extended 3 species population system with cyclic
competition, which can be regarded as a simple food-chain
model [9]. In fact, such a system is inspired by recent
experiments on the coevolution of 3 species of bacteria
in cyclic competition [4]. Using methods of statistical
physics, we study the influence of spatial degrees of free-
dom and internal noise on the coevolution of the species
and on the emerging spiral patterns. In particular, we
compute the correlation functions and provide analytical
expressions for the spreading speed and wavelength of the
propagating fronts. To underpin the role of internal noise,
the results of the stochastic description are compared with
those of the deterministic equations.

In this Letter, we investigate a stochastic spatial variant
of the rock-paper-scissors game [9] (also referred to as
cyclic Lotka-Volterra model). These kinds of systems have
been studied both from a game-theoretic perspective, see,
e.g., [10,11] and references therein, and within the frame-
work of chemical reactions [5,12], revealing rich spatio-
temporal behaviors (e.g., emergence of rotating spirals).
While our methods have a broad range of applicability,
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they are illustrated for a prototypical model introduced by
May and Leonard [13] where 3 species, A, B, and C,
undergo a cyclic competition (codominance with rate o)
and reproduction (with rate w), according to the reactions

ABS Ao, BCS Bo, CcAS Co,
B (1)
co 5 cc.

Ao 5 AA, Bo 4 BB,

Hence, an individual of species A will consume one of
species B (AB — A©) with rate o and will reproduce with
rate w if an empty spot, denoted @, is available (A@ — AA,
i.e., there is a finite carrying capacity). In addition, to
mimic the possibility of migration, it is realistic to endow
the individuals with a form of mobility. For the sake of
simplicity, we consider a simple exchange process, with
rate €, among any nearest-neighbor pairs of agents:

XYSYX, where X, Y € {A, B, C, @}. If one ignores the
spatial structure and assumes the system to be well mixed
(with an infinite number of individuals), the population’s
mobility plays no role and the dynamics is aptly described
by the deterministic rate equations (RE) for the densities a,
b, ¢ of species A, B, and C, respectively. Introducing s =
(a, b, ¢), the RE read:

ds; = si{u(l — p) — o5:45], i€{1,23}, (2

where the index i is taken modulo3 and p =a + b + cis
the total density. As shown by May and Leonard [13] (see
also [14]), these equations possess 4 absorbing fixed
points, corresponding to a system filled with only one
species and to an empty system. In addition, there is a

reactive fixed point s* = — fSu (1, 1, 1), corresponding to a

total density p* = Ui’gﬂ A linear stability analysis shows

that s* is unstable. The absorbing steady states (1, 0, 0), (0,
1, 0), and (0, O, 1) are heteroclinic points. The existence of
a Lyapunov function £ = abc/p? allows us to prove that,
within the realm of the above RE, the phase portrait is
characterized by flows spiraling outward from s*, with
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frequency w, = 3uo/[2B3wu + 20)] in its vicinity.
Approaching the boundaries of the phase portrait, the
trajectories form (heteroclinic) cycles indefinitely close
to the edges (without ever reaching them), with densities
approaching, in turn, the value one. Despite its mathemati-
cal elegance, this behavior has been recognized to be
unrealistic [13,14]. In fact, for finite populations, fluctua-
tions arise and always cause the extinction of two species
in finite time (see, e.g., Ref. [15]).

In this work, considering the spatial version of the above
model in the presence of internal noise, we show that a
robust (and, arguably, more realistic) scenario for the
evolution arises. The reaction schemes (2) and the ex-
change events are considered to occur on a
d-dimensional regular lattice of N sites, labeled r =
(r1, ..., ry). Each lattice site has z neighbors at a distance
or (e.g., z=2d and N = L? for hypercubic lattices of
linear size L) and is either empty or occupied by at most
one individual. On the lattice, the binary reactions (1) and
exchanges only occur among pairs of nearest neighbors. In
the situation of large system sizes, the continuum limit
reveals that for the exchange process to be an efficient
driving mechanism, the rate € has to scale as € &« N”, with
v =2/dand N — oo, In fact, if 0 < v < 2/d the system is
dominated by the local reactions (1) among neighboring
individuals, while effective diffusion renders locality ir-
relevant when » > 2/d. Only when v = 2/d is there an
effective competition between the stirring process and the
local reactions (1). It is therefore useful to introduce the
effective diffusion constant D = 53 N~*/?€. Because of the
discreteness of the number of individuals involved in the
reactions, internal fluctuations arise in the system. The
latter originate from (i) the interspecies reactions (1) and
(i1) the exchange processes. In the continuum limit, where
8r=N"14 with N, e — o (and finite D), there is a
separation of time scales and the pair exchanges occur
much faster than the reactions (e « N*/?). Actually, the
fluctuations associated with (1) and the agents’ mobility
scale, respectively, as N~!/2 and N~!, with the former
dominating over the latter and being the only relevant
contribution. This result is revealed by a system size,
also called Kramers-Moyal (see, e.g., Ref. [16], Chap. 8),
expansion (SZE) of the master equation underlying the
exchange processes and the reactions (1) [17].
Furthermore, the SZE yields a proper Fokker-Planck equa-
tion, which is equivalent to a set of (Ito) stochastic partial
differential equations (SPDE) with white noise. The deri-
vation, obtained in the continuum limit from the master
equation, is outlined in the supplementary EPAPS docu-
ment [17] and will be detailed elsewhere [18]. Here, we
quote the expression of the SPDE:

3
8,s1=DV251+ﬂ,(s)+zc,j(s)§j, 16{1,2,3}, (3)
=1

J

where V? is the Laplacian operator; (&(r, 1)) =0,

i(r,)é,(r, 1)) = 6, ;6(r —r")6(t — 1), and

A (s) = s{u(l = p) — 05145 C))

Cils) = Sy IN"'sull = p) + osia)  (5)

Again, the indices are taken modulo 3 and now s; =
s;i(r, ). As explained in [16,18], these SPDE have to be
interpreted in the sense of Ito calculus. While Egs. (3) and
our approach are valid in any dimension [17], for specific-
ity, we now analyze the spatiotemporal properties of the
system in two dimensions with periodic boundary condi-
tions. On the one hand we have solved numerically the
SPDE (3) using the open software from the XMDS project
[19]. On the other hand, we have carried out individual-
based simulations of the reactions (1) for mobile (exchange
process) particles on lattices of size L X L, with L =
30-1000. This allows to carefully study the convergence
towards the continuum limit, where the description in
terms of (3) is expected to be accurate.

As other spatially extended dynamical systems [5,10—
12], the model under consideration displays fascinating
nonequilibrium patterns emerging in the course of the
evolution. In Fig. 1(a) and 1(b), we report typical long-
time snapshots of the system for low (a) and high (b)
exchange rates (but keeping D fixed), as obtained from
lattice simulations. In both cases we notice that intriguing
patterns form. For slow exchange rate, the system displays
nongeometrical patches, similarly to what happens in sys-
tems with self-organized criticality [20]. When the ex-
change rate is raised, the patterns display spiral
structures. In fact, starting from a spatially homogeneous
initial condition, s(r, 0) = s*, the system is randomly per-
turbed by the internal noise and the resulting spatial in-
homogeneities grow and form wave fronts moving through
the system. The emergence of spiral patterns is a feature
shared by other excitable systems (see, e.g., [7,8]) and
corresponds to the ability of the system to sustain the
propagation of oscillating waves. For sufficiently large e,
one observes a striking resemblance between the size and

(a) Lattice
e=0.24

(b) Lattice
e=6

(c) SPDE (d) DRDE

FIG. 1 (color online). Snapshots of reactive steady states for
rates D =3 X 107°, u = o = 1. Each color (level of gray)
indicates one species (black dots correspond to vacancies). In
(a) and (b) results are from lattice simulations for L = 200 (a)
and L = 1000 (b), i.e., different €. Spiral structures emerge for
sufficiently large exchange rate (b). Numerical solution of the
SPDE (3) and DRDE are shown in (c), respectively (d); see text.
In (a)—(c), initially s(r, 0) = s™.
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structure of the patterns obtained from the lattice simula-
tions [Fig. 1(b)] and those from the SPDE (3) [Fig. 1(c)].
To further compare the predictions of the SPDE (3) with
the lattice simulations, and to gain additional information
on the structure of the emerging patterns, we have com-
puted the correlation functions, g (r—1r',7) =
(s;(r, D)s;(r', 1)) — (s;(r, ))(s,;(r', 1)) in two dimensions. In
Fig. 2 (red and blue curves), we report the results for
gaa(r, 1) in the steady state and notice an excellent agree-
ment between the results of the lattice simulations and the
predictions of the SPDE (3). The inset of Fig. 2 displays the
correlation length €., [21] as a function of € (D is kept
fixed, L varies) obtained in the lattice simulations, which is
found to coincide with the prediction of the SPDE already
for € = 5. We have also computed the autocorrelation
function g (0, 1) and found, both in the lattice simulations

and from the solutions of the SPDE, an oscillating behavior
with a similar characteristic frequency, markedly different
from wq [18]. This confirms that, even for finite exchange
rates, the solution of the SPDE (3) provides an excellent
approximation of the lattice simulations of the system. This
is rather surprising since Eqgs. (3) have been derived in the
continuum limit, where N and € — 0. A comparable
influence of finite exchange rate in a predator-prey system
has been reported recently [22]. According to the SPDE
(3), €0 scales as D'/2, so that by raising the diffusion one
increases the size of the spirals. As we have shown in
Ref. [6], this happens up to a critical value D, (e.g., D, =
4.5+ 0.5X 107* for u = o = 1): above that threshold,
the spiral structures outgrow the system size and only one
species survives, corresponding to an absorbing steady
state predicted by Egs. (2).

As the properties of the lattice simulations are well
captured by the SPDE (3), where the strength of the noise
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FIG. 2 (color online). Spatial correlation functions in 2D,
obtained from lattice simulations (red, circles; e =6, L =
1000), from the solution of the SPDE (3) (dark blue, squares)
and of the DRDE (green, triangles), see text. The reaction rates
are 4 = o = 1 and D = 3 X 107°, Inset: the correlation length
Lo, for D =5X 107>, u = o = 1, as function of € (i.e., for
different lattice sizes) compared to the prediction of the SPDE
(black line). The latter is in excellent agreement with lattice
simulations already for € = 5 (i.e., L = 225).

scales as N~1/2, with N — oo, it is natural to investigate the

actual influence of this internal noise on the steady state of
the system. To address this issue, we have solved numeri-
cally (in 2D, with periodic boundary conditions) the deter-
ministic reaction-diffusion equation (DRDE) obtained
from (3) by dropping the noise terms, i.e., d,s; = DV?s; +
A (s). Of course, to obtain a nontrivial steady state for the
DRDE one has to assume spatially inhomogeneous initial
conditions. In Fig. 1(d), we have reported a snapshot of the
long-time behavior predicted by the DRDE starting from
s(r,0) = s* + (ﬁ cos27r 15, 0,0). In this case, the dy-
namics evolves towards a reactive steady state which also
exhibits spiral waves. However, the latter do not form
entangled structures, but ordered geometrical patterns. As
an example, only four spirals cover the system in Fig. 1(d)
[while noise leads to 106 entangled spirals in Fig. 1(c)].
The correlation functions associated with the DRDE there-
fore exhibit only weakly damped spatial oscillations (see
Fig. 2, green triangles). By analyzing typical snapshots like
those of Fig. 1(d), we have noted that in the deterministic
and stochastic [i.e., lattice simulations with ‘““large” e and
solutions of Eqgs. (3)] descriptions, the spiral waves share
the same propagation velocity, frequency, and wavelength.
However, a major difference between these descriptions
lies on the crucial dependence of the DRDE on initial
conditions, which determine the overall number of spirals
and their size. On the contrary, because the internal noise
acts a random source of spatial inhomogeneities, the lattice
stochastic system and the SPDE display robust features. In
particular, we have found noise to induce a universal spiral
density of about 0.5 per square wavelength.

Analytical expressions for the spreading velocity and the
wavelength of the propagating fronts of the DRDE can be
obtained by considering the dynamics on the invariant

manifold of the RE [23], given by M: {y, = 284+

TuBut20)
(i +y3) + 0(?)}, with
V3 0 =3
(YArYB;)’C)TEE -1 2 =1 |7 =5
11 1

On M, up to 3rd order, the DRDE can be recast in the
form of a forced complex Ginzburg-Landau equation
(CGLE) [24,25]. By performing the nonlinear transforma-
tion z4 = y4 + 3’;8;0 [\3y3 + 10y,y5 — +/3y3] and z5 =
vg + 358-;,0- [5y% + 2+/3y4ys — 5y3], upon ignoring non-
linearities like (VZA,B)Q, one is left with the following
CGLE in the variable z = z4 + iz [18]:

0,2 =DV?z+ (c; —iwg)z — co(1 + ic3)|zI?z, (6)

— oQButo)d8utllo)

; = _ Mo =
with ¢; = Guto) 2= SepGptze) and c¢3 =
%. The general theory of front propagation

[24,25] predicts that Eq. (6) always admits traveling waves
as stable solutions (i.e., no Benjamin-Feir or Eckhaus
instabilities occur). We have determined such periodic
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FIG. 3 (color online). Plot of A, where A = A+/D is the
spirals’ wavelength of the propagating spiral waves. Analytical
results (red curve, rescaled by a factor 1.6; see text) are com-
pared with the solution of the SPDE (3) (black circles).

solutions by computing, from the dispersion relation of (6),
the spreading velocity v and the spirals’ wavelength A
(details will be given in [18]):

v=2c,D, A=2mc3/c;'D (1 —J1+ c§>_1. (7)

In the stochastic version of the model, the wavelength and
velocity of the wave fronts have been found to agree with
those of the deterministic treatment. Hence, the expres-
sions (7) also apply (for large €, with D << D) to the results
of lattice simulations (rescaled by a factor L) and to the
solution of the SPDE (3). For instance, on a square grid
with u = o =1, lattice simulations and Egs. (3) yield
v =~ 0.63D'/2L, in good agreement with the prediction of
(7): v = (D/2)"/2L. For the spirals’ wavelength, numeri-
cal results (lattice simulations and SPDE) yield A « D'/2
as predicted by (7). In Fig. 3, the analytical prediction (7)
for A is compared with the values obtained from the SPDE
(3), yielding a remarkable agreement for the functional
dependence on the parameter . Yet, as Eq. (6) does not
account for all nonlinearities, the analytical and numerical
values differ by a prefactor = 1.6 (considered in Fig. 3)
[18]. It can still be noted that (6) and the predictions (7) are
valid in all dimensions [17,18].

Motivated by recent experiments [4], we have consid-
ered a spatially extended model with three species in cyclic
competition and focused on the spatial and stochastic
effects. The local character of the reactions and internal
noise allow mobile populations to coexist and lead to
pattern formation. We have shown that already for finite
mobility the lattice model can be described by SPDE. With
the latter and lattice simulations, we have studied how
entanglement of spirals form and we have obtained ex-
pressions for their spreading velocity and wavelength. The
size of the patterns crucially depends on the diffusivity:
above a certain threshold the system is covered by one
species [6]. In the absence of noise, the equations still
predict the formation of spiral waves, but their spatial
arrangement depends on the initial conditions.
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