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Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport
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We investigate physical properties that can be used to distinguish the valley degree of freedom in
systems where inversion symmetry is broken, using graphene systems as examples. We show that the
pseudospin associated with the valley index of carriers has an intrinsic magnetic moment, in close analogy
with the Bohr magneton for the electron spin. There is also a valley dependent Berry phase effect that can
result in a valley contrasting Hall transport, with carriers in different valleys turning into opposite
directions transverse to an in-plane electric field. These effects can be used to generate and detect valley
polarization by magnetic and electric means, forming the basis for the valley-based electronics

applications.
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Graphene, the monolayer carbon honeycomb lattice, has
extraordinary electronic properties [1-3]. Its band struc-
ture has two degenerate and inequivalent valleys at the
corners of the Brillouin zone. Because of their large sepa-
ration in momentum space, intervalley scattering is
strongly suppressed [4,5], implying the potential use of
valley index in a way similar to the role of spin in spin-
tronics applications. Interesting valley-dependent phe-
nomena are being actively explored [6].

In this Letter, we propose a general scheme to generate
and detect valley polarization in graphene systems with
broken inversion symmetry. We reveal that there is an
intrinsic magnetic moment associated to the valley index,
in close analogy with the Bohr magneton to the electron
spin. This property makes the valley polarization a directly
measurable physical quantity. The broken inversion sym-
metry also allows a valley Hall effect, where carriers in
different valleys flow to opposite transverse edges when an
in-plane electric field is applied. It opens a new possibility
to the much desired electric generation and detection of
valley polarization. The valley Hall effect is analogous to
the spin Hall effect [7], and falls into the same category
as the Berry-phase supported topological transport
phenomena.

Graphene systems with broken inversion symmetry are
of direct experimental relevance. Zhou et al. [8] have
recently reported the observation of a band gap opening
in epitaxial graphene, attributed to the inversion symmetry
breaking by the substrate potential [9]. In addition, in
biased graphene bilayer, inversion symmetry can be ex-
plicitly broken by the applied interlayer voltage [10,11].
Moreover, as we show below, the emergent valley contrast-
ing physics is a generic consequence of bulk symmetry
properties, which provides a new and much standard path-
way to potential applications of “‘valleytronics,” or valley-
based electronic applications, in a broad class of semi-
conductors [12], as compared to the novel valley device
relying on the peculiar property of the edge state in gra-
phene nanoribbon [6]. Graphene with broken inversion
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symmetry serves as a paradigm to demonstrate the general
features and necessary conditions of such applications.

Before starting specific calculations, it will be instruc-
tive to make some general symmetry analysis. A valley
contrasting magnetic moment has the relation m, = y7,,
where 7, = *1 labels the two valleys and y is a coefficient
characterizing the material. Under time reversal, n1,
changes sign, and so does 7, (the two valleys switch
when the crystal momentum changes sign). Therefore, y
can be nonzero even if the system is nonmagnetic. Under
spatial inversion, only 7, changes sign. Therefore, 111, can
be nonzero only in systems with broken inversion
symmetry.

Inversion symmetry breaking simultaneously allows a
valley Hall effect, with j¥ = o2 X E, where o7}, is the
transport coefficient (valley Hall conductivity), and the
valley current jV is defined as the average of the valley
index times the velocity operator. Under time reversal, both
the valley current and electric field are invariant. Under
spatial inversion, the valley current is still invariant but the
electric field changes sign. Therefore, the valley Hall con-
ductivity can be nonzero when the inversion symmetry is
broken, even if the time reversal symmetry remains.

Armed with the insight from the above symmetry analy-
sis, we now consider a concrete example, a single graphene
layer with a staggered sublattice potential breaking the
inversion symmetry. Staggered sublattice potential is gen-
erally expected in epitaxial graphene as pointed out in the
review by Geim and Novoselov [3] and explicitly shown by
ab initio studies [13]. In the tight binding approximation, it
can be modeled with a nearest-neighbor hopping energy ¢
and a site energy difference A between sublattices [14—
16]. For relatively low doping, we can resort to the low-
energy description near the Dirac points. The Hamiltonian
is given by

V3 A
TGI(CIXTZO-X + Q)’Uy) + EUZ’ (1)
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where o is the Pauli matrix accounting for the sublattice
index, and ¢ is measured from the valley center K, =
(¥47/3a)x with a being the lattice constant. In the fol-
lowing, we shall focus on the n-doped graphene. General-
ization to the p-doped graphene is straightforward due to
the particle-hole symmetry presented in this system.

Because spin-orbit coupling is extremely weak in gra-
phene [17], the valley magnetic moment can only be of
orbital nature. To study this quantity, we invoke the semi-
classical formulation of the wave packet dynamics of
Bloch electrons [18]. It has been shown that in addition
to the spin magnetic moment, Bloch electrons carry an
orbital magnetic moment given by m(k) = —i(e/2h) X
(Viul X [H(k) — &(k)]|V,u), where |u(k)) is the periodic
part of the Bloch function, H(k) is the Bloch Hamiltonian,
and &(k) is the band energy [18]. It originates from the self-
rotation of the wave packet. For a two-dimensional system,
the orbital magnetic moment is always in the normal
direction of the plane and may be written as m(k)Z. Its
momentum dependence can easily be calculated from the
tight-binding Bloch states, and is shown in Fig. 1. As we
can see, N(k) is concentrated in the valleys and has oppo-
site signs in the two inequivalent valleys. Analytic expres-
sion can also be obtained from the model Hamiltonian (1)
in the neighborhood of such valleys:
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It is instructive to consider the low-energy limit (¢ — 0)
of the orbital magnetic moment
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FIG. 1 (color online). Energy bands (top panel) and orbital
magnetic moment of the conduction bands (bottom panel) of a
graphene sheet with broken inversion symmetry. The Berry
curvature (k) has a distribution similar to that of 11(k). The
first Brillouin zone is outlined by the dashed lines, and two
inequivalent valleys are labeled as K; and K,. The top panel
shows the conduction and valence bands in the energy range
from —1 to 1 eV. The parameters used are r = 2.82 eV and A =
0.28 eV.
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where m% = (2Ah?)/(3a*1?) is the effective mass at the
band bottom. This is in close analogy with the Bohr
magneton for the electron spin, where the effective mass
becomes the free electron mass. In fact, the analogy goes
further because one can also obtain the spin Bohr magne-
ton by constructing a wave packet at the bottom of the
positive energy bands of the Dirac theory and calculating
the self-rotating orbital moment. Therefore, it makes sense
to call the orbital moment calculated above as the intrinsic
magnetic moment associated with the valley degree of
freedom, provided one is only concerned with low-energy
electrons near the bottom of the valleys [19,20].

The valley magnetic moment has important implications
in valleytronics as it can be inferred from all kinds of
experiments analogous to those on the spin magnetic mo-
ment. For example, while spin polarization of electrons can
be created by a magnetic field (Pauli paramagnetism), we
expect a similar valley polarization in graphene due to
coupling between a perpendicular magnetic field and the
valley magnetic moment. Moreover, for typical values of
A ~0.28 eV and ¢ ~ 2.82 eV with a lattice constant a =
2.46 A, we find uj to be about 30 times of the Bohr
magneton. Therefore, the response to a perpendicular mag-
netic field is in fact dominated by the valley magnetic
moment at low doping in graphene. Interestingly, unlike
the spin moment which will respond to magnetic fields in
all directions, uj only couples to magnetic fields in the
z-direction. Thus, spin and valley magnetic moment can
both be determined from the anisotropic Pauli paramag-
netism in a tilted magnetic field [21].

Complimentarily, a population difference in the two
valleys may be detected as a signal of orbital magnetiza-
tion. The orbital magnetization consists of the orbital mo-
ments of carriers plus a correction from the Berry curvature
[22]

2
M=2 [ %[m(k) +(e/mp — e@]QW] @)

where w is the local chemical potential, and the integration
is over states below the chemical potential. The Berry
curvature (k) = Q(k)Z is defined by Q(k)=
Vi X (u(k)|iV|u(k)) and its distribution has a similar
structure to that of m(k). We note that Eq. (4) is for
temperatures much lower than the energy scale of band
structure (roughly given by A), which holds up to room
temperature as the experimentally observed band gap A ~
0.28 eV [8]. For a two-band model with particle-hole
symmetry, we have a simple relation between the orbital
magnetic moment and the Berry curvature in the conduc-
tion band: m(k) = (e/h)e(k)Q(k). Using this relation,
Eq. (4) may be further simplified as M = 2(e/h) X

i (g;’;z wQ (k). When the two valleys are in equilibrium
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(the chemical potential x4 is common to both), this integral
vanishes because the Berry curvature has opposite values
in the two valleys. In the presence of a population differ-
ence, the chemical potential has different values in the two
valleys p; # u,. Therefore, the net orbital magnetization
is given by

5M = 2§[mclw1> + aCal)] ~ zgcmmau, 5)

where 27C;(n) = [* d*kQ(k) is the Berry phase around
the Fermi circle in valley K;, 6 = pu; — w, and 2 =
M1+ mo. The approximate equality holds for w; > A,
where the Berry phase approaches *7r [2]. Thus, in a
crude estimation, M reduces to (e/h)d w.

Next, we discuss the Berry-phase supported topological
transport in our system. It has been well established that in
the presence of an in-plane electric field, an electron will
acquire an anomalous velocity proportional to the Berry
curvature in the transverse direction [18], giving rise to an
intrinsic contribution to the Hall conductivity [23,24],

it = 2(e2/h) [ 5 fU)Q(k), where f(k) is the Fermi-

Dirac distribution function, and the factor of 2 comes from
spin degeneracy. There is also a side-jump contribution
[25] proportional to the Berry curvature when carriers
scatter off an impurity potential. The aforementioned sym-
metry argument manifests itself in the symmetry property
of the Berry curvature £2(k): it is an odd function in the
presence of time reversal symmetry and even in the pres-
ence of inversion symmetry. From Eq. (1), we have for the
conduction band

3a2A 7
“2(A% + 3¢g%a%r2)3?

Qg) =7 (6)

Ignoring skew-scattering and other effects due to interval-

ley scattering, we find a valley-dependent Hall conductiv-

ity as

A 3APqra?
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where g is the Fermi wave vector which is related to the
bulk chemical potential by u = 3./A? + 3g7.a*r*. The
third term is the side-jump contribution, which is also
independent of the scattering rate [26]. Interestingly,
when the Fermi energy e = u is bigger than the gap A,
such that the Berry curvature peak is well covered by
occupied states, the Hall conductance approaches a quan-
tized value of 7_e?/h.

The valley dependence in the Hall current will lead to an
accumulation of electrons on opposite sides of the sample
with opposite valley index [see Fig. 2(a)]. If an electric
field E, is applied along a strip of the sample, the valley
population difference at one edge is given by

(@)

FIG. 2 (color online). Electric generation (a) and detection (b)
of the valley polarization. (a) An in-plane electric field will
generate a transverse valley current, which leads to a net valley
polarization on the sample edges. (b) A valley polarization
created by the valley filter [6] results in a transverse voltage
across the sample.

— 4V j— v
on = jit, = oxET,,

0-}";1 = Z Tza-H(Tz)/e’ (8)

where 7, is the intervalley life time. The valley polariza-
tion is distributed along the edge within the diffusion
length I = vpy/797,/2, Where vg is the Fermi velocity
and 7 is the intravalley scattering time. From Ref. [5], we
take 79 = 0.1 ps and 7, = 50 ps. Assuming an electric
field E =1 mV/um, we find a valley population differ-
ence of 10—100 per wm along the edge and distributed over
a width of /r ~ 1 um. This valley polarization may be
detected as a magnetic signal as we discussed before.

Clearly, if there is a net valley polarization (p; # w,), a
Hall current will appear upon the application of an electric
field E,

o e A 9APGEA?

Jx = z[z—laz - T_qf}b‘,uEy. )
This Hall current will then lead to a measurable transverse
voltage across the sample. If the width of the bulk region is
smaller or comparable to the mean free path, the transverse
voltage along the edge gives a local mapping of the valley-
polarization in the bulk. We show in Fig. 2(b) an experi-
mental setup in conjunction with the valley filter device [6]
to demonstrate this effect (we note that inversion symmetry
breaking does not change the edge state property needed
for the valley filter to function).

The valley magnetic moment and valley Hall effect
predicted above are generic features in systems with bro-
ken inversion symmetry, as shown by another example, the
biased bilayer graphene. This system may be modeled by
an intralayer nearest-neighbor hopping ¢, an interlayer
nearest-neighbor hopping 7, and an energy bias A be-
tween the layers, which breaks the inversion symmetry
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FIG. 3 (color online). Valley contrasting properties of conduc-
tion bands in biased graphene bilayer. (a) Energy dispersion
(green or gray curves) and Berry curvature (black curves).
(b) Orbital magnetic moment. Solid curves for lower conduction
band and dashed curve for upper conduction band. The quanti-
ties are shown for the K valley. Distributions of m(k) and Q.(k)
have opposite signs in the K, valley. The corresponding valley
magnetization (c) and the valley Hall conductivity (d) are also
shown as a function of chemical potential. The parameters used
are t =2.82eV,A=0.2¢eV,and r; =04 eV.

[11]. Angle-resolved photoemission spectroscopy studies
[10] of bilayer graphene films synthesized on SiC sub-
strates confirm the band structure from this model.

Biased bilayer graphene has two positive energy bands
(conduction) and two negative energy bands (valence) if
spin degeneracy is discounted. In Fig. 3, we show numeri-
cally calculated energy bands, Berry curvatures, and orbi-
tal magnetic moments of the two conduction bands. The
parameter values are chosen in accordance with experi-
mental result [10]. (k) and m(k) are again peaked at the
valley bottom. The valley magnetization and the valley
Hall effect are of the same order of magnitude as in the
epitaxial single-layer graphene. We note that the valley-
dependent Hall conductance approaches a quantized value
of 27.e?/h, twice of that for the single layer. This is
consistent with the fact that in bilayer graphene, the
Berry phase acquired by an electron during one circle
around the valley becomes *27 instead of =7 when the
gap closes [27].

The authors thank C.-K. Shih for discussions on the
experimental aspect of measuring the valley Hall effect,
A. Lanzara for sending us the manuscript before publica-
tion, and also acknowledge useful discussions with Y.
Barlas, K. Nomura, and H. Min. This work is supported
by NSF, DOE, the Welch Foundation, and NSF of China.

*Corresponding authors: dxiao@physics.utexas.edu;
wangyao@physics.utexas.edu

[1] K.S. Novoselov et al., Science 306, 666 (2004).

[2] K.S. Novoselov et al., Nature (London) 438, 197 (2005);
Y. Zhang et al., Nature (London) 438, 201 (2005).

[3] A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183
(2007).

[4] S.V. Morozov et al., Phys. Rev. Lett. 97, 016801 (2006);
A.F. Morpurgo and F. Guinea, ibid. 97, 196804 (2006).

[5] R.V. Gorbachev et al., Phys. Rev. Lett. 98, 176805 (2007).

[6] A. Rycerz, J. Tworzydlo, and C. W.J. Beenakker, Nature
Phys. 3, 172 (2007).

[7] S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301,
1348 (2003); J. Sinova et al., Phys. Rev. Lett. 92, 126603
(2004).

[8] S.Y. Zhou et al., Nat. Mater. 6, 770 (2007).

[9] S. Gwo and C.K. Shih, Phys. Rev. B 47, 13059 (1993).

[10] T. Ohta et al., Science 313, 951 (20006).

[11] E. McCann and V.I. Fal’ko, Phys. Rev. Lett. 96, 086805
(2006); E.V. Castro et al., arXiv:cond-mat/0611342;
H. Min, B. Sahu, S.K. Banerjee, and A. H. MacDonald,
Phys. Rev. B 75, 155115 (2007).

[12] O. Gunawan et al., Phys. Rev. Lett. 97, 186404 (2006).

[13] G. Giovannetti et al., Phys. Rev. B 76, 073103 (2007).

[14] G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

[15] G. Sundaram, Ph.D. thesis, The University of Texas at
Austin, 2000.

[16] C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

[17] H. Min et al., Phys. Rev. B 74, 165310 (2006); Y. Yao
et al., Phys. Rev. B 75, 041401 (2007).

[18] M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).

[19] L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78, 29
(1950).

[20] C.-P. Chuu, M.-C. Chang, and Q. Niu, arXiv:0709.1407.

[21] We note that total magnetic susceptibility in graphene is
also contributed from an anisotropic Landau diamagne-
tism. See J. W. McClure, Phys. Rev. 104, 666 (1956).

[22] D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204
(2005); T. Thonhauser, D. Ceresoli, D. Vanderbilt, and
R. Resta, ibid. 95, 137205 (2005); D. Xiao, Y. Yao,
Z. Fang, and Q. Niu, ibid. 97, 026603 (2006).

[23] R. Karplus and J.M. Luttinger, Phys. Rev. 95, 1154
(1954).

[24] T. Jungwirth, Q. Niu, and A.H. MacDonald, Phys. Rev.
Lett. 88, 207208 (2002).

[25] L. Berger, Phys. Rev. B 2, 4559 (1970).

[26] N.A. Sinitsyn, Q. Niu, and A.H. MacDonald, Phys.
Rev. B 73, 075318 (2006); W. Yao, A.H. MacDonald,
and Q. Niu, Phys. Rev. Lett. 99, 047401 (2007).

[27] K.S. Novoselov et al., Nature Phys. 2, 177 (2006).

236809-4



