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Screening of charge impurities in graphene is analyzed using the exact solution for vacuum polarization
obtained from the massless Dirac-Kepler problem. For the impurity charge below a certain critical value,
no density perturbation is found away from the impurity, in agreement with perturbation theory. For the
supercritical charge, however, the polarization distribution is shown to have a power law profile, leading to
screening of the excess charge at large distances. The Dirac-Kepler scattering states give rise to standing
wave oscillations in the local density of states which are prominent in the supercritical regime.
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Massless Dirac excitations in graphene [1] provide an
interesting realization of quantum electrodynamics (QED)
in dimension two [2]. Because of a zero mass and strong
interactions, characterized by a large ‘‘fine structure con-
stant’’ � � e2=@vF � 2:5, where vF � 106 m=s is the
Fermi velocity, this material breaks away from the pertur-
bative QED paradigm. One of the phenomena fundamental
in QED, expected to become strong in graphene, is ‘‘vac-
uum polarization’’ induced by charge impurities. Although
the problem of Coulomb scattering received a lot of atten-
tion [3–8], the key question of screening of the impurity
potential outside the weak coupling regime has not been
adequately addressed [7,8].

Here, we present an accurate nonperturbative treatment
of this problem based on the vacuum polarization found
from the exact solution of the 2d Dirac-Kepler problem.
There are two qualitatively different regimes emerging
from this solution, which are somewhat analogous to those
known in QED of heavy atoms [9]. The Dirac equation
with a Coulomb-like singularity is consistent only for a
potential of a subcritical strength while in the supercritical
case a finite nuclear radius must be accounted for [10]. We
shall see that a similar behavior arises in our problem
above the critical charge value

 � � �c �
1

2
; � �

Ze2

�@vF
; (1)

where � is the effective dielectric constant. For the case
when screening is solely due to the graphene electrons, the
RPA approach [2] gives �RPA � 5. With e2=@vF � 2:5,
this yields a critical value Zc � 1.

The most prominent effect in our problem, arising at
supercritical �, is the change in the character of polariza-
tion of the Dirac vacuum. While at �< 1

2 the polarization
charge qp is localized on the scale of the impurity radius
and exhibits no long range tail [8], for supercritical �, our
solution of the massless Dirac equation for noninteracting
fermions predicts polarization of a power law form. For
1
2 <�< 3

2 , when just the lowest angular momentum chan-

nels are overcritical, we find

 npol�����
N�sgn�

2�2�2 �qp����; ��
�������������������
�2�1=4

q
; (2)

where N � 4 is the combined spin and valley degeneracy
of graphene. At higher �, the polarization charge still
exhibits a tail of a 1=�2 form [see Eq. (27)].

The result (2), found for noninteracting fermions, can be
used to describe screening in an interacting system in a
self-consistent renormalization group (RG) fashion. The
RG flow for a polarized cloud is constructed by proceeding
from the lattice scale � � r0 to larger �, treating the net
polarization charge with the radius � as an effective point
charge ����, and using it to determine polarization at
distances �0 >�. As a result, the net charge ���� flows
from its initial value ��r0� to lower values. The net charge
(2) within the annulus �1 < �< �2 equals �Z �
�Nsgn� �

� ln��2=�1�, which gives an RG equation

 

d����
d ln�

� �
Ne2sgn�
��@vF

����; � > �c: (3)

Integrating the flow (3), we find that it terminates at a
distance �� � r0 exp���@vF

Ne2 cosh�1�2��	 where � reaches
the critical value (1). In contrast to screening in metals,
here the polarization buildup brings the net charge down to
the critical value �c that remains unscreened at larger
distances � * ��. The RG treatment is applicable when
the RG flow is slow, i.e., when the right-hand side of
Eq. (3) is small. Thus, the RG framework is adequate
near the criticality, � � �c, where � is small, even in the
case of strong coupling, e2=�@vF 
 1, and the predicted
termination of screening at large � is universal.

Our treatment of vacuum polarization relies on the exact
solution of the Dirac-Kepler problem from which we ex-
tract scattering phases and use them in the Friedel sum rule
framework to evaluate the screening charge. The phases
are found to behave differently for �< �c and �>�c. In
the first case, the essential part of the phase is� lnk�, while
in the second case, it is � lnk�� �sgn� lnkr0. Notably,

PRL 99, 236801 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 DECEMBER 2007

0031-9007=07=99(23)=236801(4) 236801-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.236801


the term � lnk� is the same for all angular momentum
channels. Such a contribution to the phase, as Ref. [11]
insightfully remarks, arises from quasiclassical dynamics
at large distances and has nothing to do with scattering.
Accordingly, we find that it does not affect polarization at
finite �, while the term ��sgn� lnkr0 gives rise to the
power law in (2).

Now we turn to the analysis of the massless Dirac
equation in dimension two in a central potential V���:

 @vF
0 �i@x � @y

�i@x � @y 0

� �
 � �"� V���	 : (4)

Introducing polar coordinates x� iy � �ei’, we separate
angular harmonics of the two-component wave function  
and seek the solution in the form [12]

  ��;’� �
w��� � v���

�w��� � v���	ei’

� �
�s�1=2ei�m�1=2�’eik�; (5)

with halfinteger angular quantum number m. The terms w
and v represent the incoming and outgoing waves. The
parameters s and k are determined by the behavior at small
and large �. For V��� � Ze2=�, we find

 s �
������������������
m2 � �2

q
; k � �

"
@vF

; (6)

where� is the dimensionless coupling (1). [The minus sign
in (6) is chosen to make k > 0 in the Fermi sea.] The
solution (5) behaves differently for j�j< jmj, when the
exponent s is real, and j�j> jmj, when s becomes com-
plex imaginary.

The ansatz (5), substituted into Dirac equation, yields
coupled equations for the functions w��� and v���:

 �@�w� �s� i�� 2ik��w�mv � 0; (7)

 �@�v� �s� i��v�mw � 0: (8)

We eliminate w and introduce a new independent variable
z � �2ik� to obtain a hypergeometric equation

 zv00 � �2s� 1� z�v0 � �s� i��v � 0: (9)

The solution regular at z � 0 is given by the confluent
hypergeometric function [13]:

 v�z� � A1F1�s� i�; 2s� 1; z�; (10)

 w�z� � A
s� i�
m 1F1�s� 1� i�; 2s� 1; z�; (11)

where A is a normalization factor. The expression for w
was obtained using Eq. (8) and an identity for 1F1 [14].

The solution (5), (10), and (11) of the Dirac-Kepler
problem, regular at � � 0, can be used to evaluate the
polarization charge in the subcritical case j�j< 1=2.
This can be done most easily using the scattering phases,
given by the behavior of w and v at large �. Using the
asymptotic form of the functions 1F1 [15], we find

 v��� �
�ei� ln�2k��

�2k��s
; w��� �

��e�i� ln�2k��e�2ik�

�2k��s
; (12)

where the parameter � depends on m and � but not on k.
From (12), we see that �s��1=2�w��� exp�ik�� and
�s��1=2�v��� exp�ik�� indeed describe the incoming and
the outgoing waves, characterized by relative phase

 v=w� e2i�m�k��2ik�; �m�k� �� ln�2k��� arg�: (13)

The log dependence in Eq. (13) is typical for the phase
coming from 1=r Coulomb tail [11].

The scattering phases �m�k� can be used to find the
polarization charge pulled on the origin. However, a
straightforward application of the Friedel sum rule
[16,17], involving phases evaluated at the Fermi level,
encounters a difficulty due to the position and energy
dependence of the phases in Eq. (13). Since this may
indicate that the polarization is distributed rather than
localized at � � 0, we proceed with caution.

To evaluate the excess particle number Qpol��� in the
region 0 � �0 < �, we note that the states with jkj & 1=�,
i.e., of wavelength in excess of �, contribute negligibly to
Qpol���. Thus, we can write the sum rule [16,17] as

 Qpol��� � �
N
�

X
m

�m�k
 1=��; (14)

where the minus sign corresponds to that in Eq. (6). Con-
veniently, the expressions (13) for �m�k�, valid at k� * 1,
can be used to evaluate (14). However, since �m�k� depend
on the product k�, they yield a �-independent result for
Qpol���. We therefore conclude that the polarization charge
is concentrated on the lattice scale � � r0.

To independently verify the conclusion about polariza-
tion at �< 1=2 concentrated at � & r0, we evaluated it
directly using the eigenstates given by Eqs. (5), (10), and
(11). This calculation involves an energy cutoff introduced
at the bottom of graphene band, corresponding to k � r�1

0 .
We found nonvanishing contribution to polarization charge
only on the cutoff scale, leading to an expression npol��� �
�qp���� [the second term in Eq. (2)]. This form of polar-
ization charge can be independently justified by the RPA
method [4,8], giving qp �

�
2 �. Our numerical results at

0< j�j & 1, presented in Fig. 1, yield a similar depen-
dence, nearly linear at j�j< 1

2 , independently confirming
the above analysis.

The behavior of the scattering phase and of the polar-
ization charge changes when the potential strength j�j
exceeds jmj for one or several values of m. For such
supercritical �, Eq. (10) is not the only possible solution.
Adding another solution of the Eq. (9), we write the
function v�z� in the form
 

v�z� � A1F1�i��� ��; 1� 2i�; z�

� Bz�2i�
1 F1�� i��� ��; 1� 2i�; z�; (15)

where � � Ims �
������������������
�2 �m2

p
, and z � �2ik�. With the

help of the relation [14], we find
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 w�z���iA	1F1�1� i�� i�;1�2i�;z�

� i�B=	�z�2i�
1F1�1� i�� i�;1�2i�;z�; (16)

where 	 � �� �=�� �.
To find the relation between A and B, we consider our

solution at small distances, � � r0  1=k:

 v��� � A� Be���e�2i� ln�2k��; (17)

 w��� � �iA	� i�B=	�e���e�2i� ln�2k��: (18)

Motivated by the description of zigzag edge [18], and
without loss of generality, we use the boundary condition
 2�� � r0� � 0 for the wave function (5), which enforces
zero amplitude on one of the graphene lattice sites. Solving
the equation v�r0� � w�r0�, we find the relation

 B�e2i
�k�	e��A; e2i
�k� ��i
1� i	
1� i	

e2i� ln2kr0 : (19)

The product kr0 is very small for typical k, making the
phase factor e2i
�k� a rapidly oscillating function of k.

To better understand the role of the second solution, let
us take another look at the subcritical case, j�j< jmj,
when the parameter s, Eq. (6), is real. In this case, two
independent solutions are still provided by Eqs. (15) and
(16), whereby i� is replaced by s. Applying the boundary
conditions the same way as above, instead of (19), we find
B=A / �2kr0�

2s  1, which indicates that the second so-
lution plays no role in the subcritical case.

To link 
�k�, Eq. (19), to the scattering phase, we write
our solution for v���, w��� at large distances �k� 1,
again using the asymptotic expression for 1F1 [15],

 

v
w
�
g�;� � e

2i
e���	g�;��
e���	g��;�� � e

2i
g��;�
e2ik�e2i� ln2k�; (20)

where g�;� � ��1� 2i��=��1� i�� i��. We note that
(20) automatically satisfies the current conservation re-
quirement jvj � jwj. The relative phase of v and w, de-
fined as in Eq. (13), thus equals

 �m�k� � ��k� � � ln2k�� argg�;�; (21)

where

 ��k�� arg�e�i
�k� �aei
�k�	; a�e���	
g�;��
g�;�

: (22)

The last two terms of the phase (21) are identical in form to
(13). They represent spherical wave ‘‘deformed’’ by the
tail of Coulomb potential at large distances and, as we
discussed above, give no contribution to polarization
charge at finite �. The term ��k�, however, arising from
the boundary condition at small � via the phase 
 �
arg�B=A�, Eq. (19), makes the behavior completely differ-
ent from that found for j�j< jmj.

The phase ��k� dependence on k is determined by the
relation between � and 
, Eq. (22). For the latter, the
winding number depends on

 jaj �

��������������������������������
e�2�� � e�2��

e2�� � e�2��

s
�

�
<1 if �> 0;
>1 if �< 0:

(23)

(We recall that 0< �< j�j.) The phase � winding is thus
controlled by the first term of (22) at �> 0 and by the
second term at �< 0, allowing us to write it as

 ��k� � �sgn�
�k� ����k�; (24)

where �� is an oscillatory periodic function of 
.
It is instructive to compare the behavior of ���k� at

strongly overcritical and nearly critical �. For large j�j, we
have � � j�j and jaj � e�2��, and thus �� is exponen-
tially small. In the opposite limit of nearly critical � �
�c � �m, we expand jaj in small � to find jaj � 1�
O���. In this case, �, as a function of 
, is a staircase with
steps of height �, width �, and corners rounded on the
scale O���. The staircase slope � 1

2 sgn� corresponds to
the first term in Eq. (24). The oscillatory part ���k�
manifests itself in the local density of states around the
impurity (see peak in the " < 0 region in Fig. 2 inset).

To analyze the contribution of the phase ��k� to the po-
larization density, we suppress the periodic part ��. Using
the expression (22), we find ��k����sgn�ln2kr0.
Substituting it in the Friedel sum rule, Eq. (14), we find

 Qpol��� � �N
��k
 1=��

�
� �sgn�

�N
�

ln
�

2r0
: (25)

From npol��� � �2����1dQpol=d�, we find the polariza-
tion density (2). When the parameter s is complex in more
than one channel, one has to consider a sum

 npol��� � �
Nsgn�

2�2�2

X
jmj<j�j

������������������
�2 �m2

q
: (26)

For large �� 1, replacing the sum by an integral, we re-

FIG. 1 (color online). Local polarization charge found from
numerical solution of a tight-binding problem on a honeycomb
lattice. The charge was placed in the middle of a rectangular
region of size n1 � n2 at the lattice plaquette center or edge
center (see legend). Shown is the net polarization at a distance of
less than 5 lattice constants from point charge, which agrees with
the prediction of a perturbative RPA calculation (dashed line).
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cover the Thomas-Fermi result npol��� � N�j�j=�4��2�

found in [7] for noninteracting fermions.
For supercritical �> 1

2 , as discussed above, the scatter-
ing phase becomes sensitive to the physics at small dis-
tances, � � r0. This leads to pronounced interference of
the incoming and outgoing waves, which is manifest in the
local density of states (LDOS),

 ��"; �� �
N

�@vF

X
m

j �k"; ��j2; k" � �
"

@vF
; (27)

with an appropriate normalization of the two-component
wave function  , Eq. (5). We evaluated the sum in (27)
numerically, using the expressions (15) and (16). For 0<
j�j< 1

2 , LDOS does not deviate too much from ���0 / j"j
(see Fig. 2 inset). For supercritical �, however, LDOS
develops pronounced oscillations in both position � and
energy k". The crossover from a nonoscillatory to oscil-
latory behavior at � � 1

2 becomes sharp at �� r0.
The standing waves in LDOS (27) at �> 1

2 are different
from Friedel oscillations, since kF � 0 for the Fermi level
centered at the Dirac point: the spatial period scales in-
versely with energy, so that the maxima occur at k"� �
�n� 1

2�� (see Fig. 2). This is similar to the oscillations in
LDOS studied in carbon nanotubes [19]. As in Ref. [19],
the energy-dependent spatial period can be used to obtain
direct information about Fermi velocity vF in graphene.

Spatial periodicity of this modulation and its energy
dependence are purely geometric and thus do not depend
on the impurity charge. However, as Fig. 2 demonstrates,
the modulation remains weak for subcritical charge and
becomes strong for supercritical impurities. Thus, in the

interacting case, it will extend up to the vacuum polariza-
tion cloud radius ��. At such distances, it will be affected
by finite temperature T * T� � @vF=��, and also by car-
rier doping away from neutrality by �n * ��2

� strong
enough to induce screening at distances less than ��.

To summarize, we found that the excess charge �� 1
2 of

supercritical impurities in graphene is fully screened by the
Dirac vacuum polarization. The large screening cloud size
and the standing wave oscillations predicted within it can
be directly probed by STM technique. The sharp departure
from linear screening for supercritical impurities repre-
sents an interesting example of nonlinear screening that
can be realized in graphene. Our estimates for the critical
charge, using �RPA � 5, yield an experimentally conve-
nient value Zc 
 1, making experimental tests of these
effects in graphene practical.
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