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Disorder Induced Transition into a One-Dimensional Wigner Glass
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The destruction of quasi-long-range crystalline order as a consequence of strong disorder effects is
shown to accompany the strict localization of all classical plasma modes of one-dimensional Wigner
crystals at T = 0. We construct a phase diagram that relates the structural phase properties of Wigner
crystals to a plasmon delocalization transition recently reported. Deep inside the strictly localized phase of
the strong disorder regime, we observe glasslike behavior. However, well into the critical phase with a
plasmon mobility edge, the system retains its crystalline composition. We predict that a transition between
the two phases occurs at a critical value of the relative disorder strength. This transition has an
experimental signature in the ac conductivity as a local maximum of the largest spectral amplitude as

a function of the relative disorder strength.
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The behavior of interacting electrons in a random envi-
ronment has long been a topic of interest in condensed
matter physics. When the electrons are confined to a single
dimension, many of the complications inherent in the study
of such a system are vitiated; a number of studies have
focused on the behavior of the collective modes, the vari-
ous competing manifestations of long-range order and, of
course, the equilibrium structural properties of such sys-
tems [1-3]. More specifically, in the regime in which
electronic correlations are expected to be dominant, the
Wigner crystal (WC) phase has been proposed as a possible
equilibrium configuration in several different 1D and
quasi-1D systems [4,5].

One possible consequence of disorder in any dimension-
ality is the localization of both electronic wave functions
and collective modes [6,7]. Recently, the plasmons of a
disordered 1D WC have been reported to exhibit a deloc-
alization transition [8]. Subsequent investigations have
clarified the statistical arrangement of the electrons at
equilibrium for different types and strengths of disorder
[9].

In many discussions of 1D WC systems at 7 =0 a
primary concern is whether the system is truly a crystal
in the thermodynamic limit when the effects of quantum-
mechanical zero-point motion are included. Previous ef-
forts have shown that—although there may not be true
long-range order—the plasmon displacement u(x), corre-
lation functions decay in space much slower than any
power law, ((u(x) — u(0)]?) = /In(x). Evidently, this im-
plies that strong Bragg peaks would appear in an experi-
mental probe of the crystal scattering intensities, thus
indicating quasi long-range order [2,10]. Furthermore,
one is justified in the use of classical methods for studying
the plasma modes, due to the lack of particle wave-function
overlap at strong unscreened repulsion, existing at lower
densities. In this letter we focus on the relationship be-
tween the localization of the plasma modes in a one-
dimensional array of localized charges (a one-dimensional
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Wigner Crystal, or 1D WC) and the extent to which quasi-
long-range crystalline order prevails in this system in the
presence of a “white noise’” random potential at 7 = 0. We
first confirm an vital aspect of the plasmon Anderson
transition not discussed before, in that at and beyond a
critical value of the disorder strength, measured with re-
spect to the interaction magnitude, all plasma eigenmodes
are localized, in analogy to what is seen in the three-
dimensional (3D) Anderson transition for noninteracting
electrons. Strikingly, we find that all Bragg peaks at 7 = 0
also disappear in the immediate neighborhood of this
critical value of the disorder. This aspect of the transition
can be placed in the context of earlier work on the
Anderson transition, in which it is predicted that localiza-
tion effects tend to stabilize glassy behavior [11]. The core
of these results are illustrated by the phase diagram shown
in Fig. 1, where the phase boundary separates the fre-
quency w regime that the plasma modes of the 1D WC
system are localized from the regime in which they are
extended.

The physical system is controlled by the model
Hamiltonian of a standard jellium Wigner crystal with an

Mobility Edge

Extended

FIG. 1. Phase diagram of the disordered 1D Wigner crystal,
showing a distinct localized glass phase for k < k.. The quantity
x quantifies the strength of the Coulomb interactions between
the localized electrons, in relation to the strength of the disorder
[see the discussion below Eq. (1)].
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added random potential that interacts with each charge [8]:
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% lxi = x;

with  V(x) = A[SY a, cos(27nx) + b, sin(27nx)]. The
parameters J and A are coupling constants that define the
dimensionless interaction strength x = J/A. The random
variables a,, and b, are chosen from different Gaussian
distributions, yielding a white noise power spectrum with a
mean of u = 0 and a variance of o = 1. The number of
Fourier amplitudes, N, was set to N = L /4 for proper scale
invariance. We have observed that the critical mobility
edge frequency w? is generally dependent on the ratio
N/L of V(x), which represents the average number of
charges available per potential well. The scaling signifi-
cance of N in finite sized systems is not immediately
obvious and must be studied more carefully.

Since we are interested in quasi-long-range crystalline
order (due to zero-point motion), it is sufficient to study
large finite systems with periodic boundary conditions. The
charges were numerically relaxed to their equilibrium
configuration with the use of methods are outlined in [9]
and briefly described below. Let us introduce the various
physical quantities of interest that are needed to interpret
the results of our investigations.

First, the central quantity used for studying the plasma
modes is the dynamical matrix D(R). For a finite
sized chain of length L, D(R) is an L X L symmetric ma-
trix with the structure, D(R — R/) = g p/S rd*(x)/
0x?|,—r_r» — 9°p(x)/0x*|,—r_gr/>» Where ¢(x) is defined
as the electrostatic potential between two charges in a
periodic image and the R’s are the equilibrium positions
of the charges, of which are not necessarily periodically
ordered and must be determined from a numerical equili-
bration. The eigenvalue equation for plasma eigenmodes
follows as [12]: m,@*u(R) + S g/ D(R — R")u(R’) =0,
with u(R) as the lattice displacements from equilibrium.
Apparently, all physical quantities calculated in this article
require the determination of the equilibrium R’s; therefore,
an effective numerical relaxation method is absolutely
indispensable. We have employed a Newton-Raphson pro-
cedure by which one recursively applies the inverse of
D(R) to the out-of equilibrium particle coordinates R until
the simultaneous total forces on the charges are sufficiently
close to zero [9] and consequently the system approaches
equilibrium.

An important experimental quantity that follows from
the plasma oscillations is the ac conductivity. The plasmon
propagator G(w), is a measure of the response of the
particle array to an external electric field. G(w) can be
determined from D(R), by constructing the resolvent:
G(w) =3S%>E 1/(w?l — D(R, R)). Applying the Kubo
formula, the ac conductivity is given by [12], o(w) =
IAwG(w).

As in [8], the lengths are scaled so that the size of the
region occupied by the charges is unity, ¢(x) =

ar| csc(7rx)|, and the eigenfunction width is given by &; =
L?/Q2a*) YL, ui(m)*u;(n)*sin*(R,, — R,), where u;(m)
and R,, are the respective ith eigenfunction amplitude
and particle position at the site m.

In terms of the structural properties, we have investi-
gated the integrity of the Fourier space of particle coordi-
nates, given by S, = (L_ e*Rn)/L, k=2mm/L,
m = 1,2,3,... For arbitrarily small disorder strength, the
eigenfunctions are no longer pure plane waves. However,
some crystalline aspect to the system is conserved, ex-
pressed by the standard criterion that there exists at least
one Bragg peak in the spectrum of S;. It is, in fact,
sufficient to track the behavior of the height of the first
Bragg peak, g(k), as the interaction strength « is changed.
In the neighborhood of the structural phase transition
g(k) — 0, and the system is best described as an amor-
phous solid or glass.

Typically in finite sized systems with quenched disorder,
various quantities exhibit fluctuations that scale like 1/ VL.
For smaller values of L, we can reduce the severity of these
effects by performing averages over sufficiently large en-
sembles. However, at larger system sizes these quantities
are self-averaging and one can reduce the number of
required ensembles. Another source of numerical uncer-
tainty is generated in the relaxation procedure outlined in
Ref. [9], where residual forces can move the charges
slightly out of equilibrium. Therefore, we have relaxed
the charges to =107 !2 in relative force magnitude.

The essence of the Anderson transition is that all of the
eigenfunctions of some Hamiltonian, or D(R — R’), con-
taining an explicit form of randomness are localized if the
normalized interaction strength, k, is below some definite
value k.. However, for k > k., some eigenmodes are
localized in a transition that also depends on the value of
the spectral variable w?. That is, the eigenfunction spec-
trum is divided by a mobility edge, w? that separates the
frequency range in which all the states are localized from
the set of frequencies for which they are extended [6,7]. In
this particular 1D WC system, the plasmon mobility edge
has been confirmed [8]. However, a transition involving «,
was not observed. We now report on this crucial aspect of
the transition, as shown in Fig. 2. Our general strategy for
determining the existence of such a transition is to diago-
nalize D(R — R’), isolate the localization length ¢ of the
most extended of all eigenmodes and observe how it
behaves as a function of x. We have computed £, normal-
ized by the system size, £(k)/L. We require £/L = 1 for a
truly extended eigenmode. As shown in Fig. 2(a), as « is
decreased more states are localized until w? coalesces with
the lower band edge, signifying complete localization. A
bulk transition in the thermodynamic limit is confirmed by
a common crossing point in the uncollapsed data shown in
Fig. 2(b).

Tests for a transition in the limit of an infinite system
have been performed with the use of a finite-size scaling
analysis, where we assumed the dependence of the princi-
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FIG. 2 (color online). (a) The normalized most extended ei-
genwidth vs interaction strength showing a crossing point at k =
0.00013 in (b). (c) Finite-size scaling analysis at data collapse for
6 = 0.42 = 0.05.

pal quantities, /L = F(L'%(k — k.)/k_), in terms of a
universal function F. We have verified that the data col-
lapse is controlled by the single exponent o =~ 0.42 =
0.05, of which has been optimized by applying a x>
analysis in the overlapping regime yielding a p value =
0.40, for which the data collapse can be interpreted as
being in statistical agreement. For the specific parameters
of our model, we have determined «, =~ 0.00013 *=
0.00002. We have also expanded earlier investigations [9]
into the strong disorder regime near . and have observed
g(k.) = 0 as shown in Fig. 3(a). Additionally, a focused
plot of the critical regime is shown in Fig. 3(b), where g(«)
reaches a lower saturation point precisely at g(k.). We
have verified that this is a bulk transition in the limit of a
large system size as shown in Fig. 3(d). The disappearance
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FIG. 3 (color online). (a) g(k) at different system sizes. (b) A
close up of g(k) in the amorphous regime where g(k = «,.) — 0.
(¢c) L = 256, 1st Bragg peak height g(x) and most extended
eigenwidth &/L, showing a coincidence of the structural and
delocalization transitions at k = .. (d) g(k.) as a function of
system size L.

of the first Bragg peak is a generic feature of structural
phase transitions into amorphous, ““glasslike’” structures. A
useful visual description is given by Fig. 5, where the
relaxed particle configurations are plotted along with the
random potential V(x), in both the crystal (x = 0.001) and
amorphous («x = 0.0001) regimes. Clearly, in the amor-
phous regime, where k < k., the charges tend to cluster
into small crystallite domains inside of the potential wells.
A characteristic length scale of these domains, R, tends
like the effective capacity or width of the individual well. It
is important that we note that R is a disorder dependent
quantity and regarding previous work on similar systems,
R, can be naively associated with the Larkin length [13] for
pinned elastic systems. However, it should be noted that we
are studying a discrete model and by contrast the Larkin
length arises as the equilibrium length in a force balancing
scheme for a continuum model. Therefore, the association
of R, with the Larkin length should be taken very loosely,
if at all. The relationship between the plasmon delocaliza-
tion transition and physics of pinning in elastic systems is
not known.

We have confirmed a direct association of the quasi-
long-range crystalline order regime with the existence of a
plasmon mobility edge by determining a coincidence of
those respective transitions close to k = k.. Upon inspec-
tion it is also evident from the two most extended eigen-
functions of the glassy regime, plotted as u; (R) and u,(R)
in Fig. 5(a), that the localized plasmon eigenmodes tend to
be confined near double well potentials. Consequently, the
total data we have presented develop the basis for the phase
diagram shown in Fig. 1.

Let us now focus on the behavior of the o(w) in the
regimes separated by .. From the definition of o(w) given
earlier, Re[o(w)] * Im[iwG(w)] < p(w), where p(w) is
the plasmon spectral density. It is well known from pre-
vious studies of Anderson localization that p(w) in the
strictly localized regime exhibits, discrete and well sepa-
rated peaks that correspond to the bound state spectrum
[6]. We computed Re[ o(w)] for both k < k. and k > k, as
shown in Fig. 4. Clearly in the localized regime, Fig. 4(b)
we recover the expected discreteness, essential to
Anderson localization. It follows that in the thermody-
namic limit, the smaller individual peaks would smear
out into a continuum. However, this differs from the « >
k. response of Fig. 4(a), corresponding to a large, single
and intact domain. Therefore we emphasize that an experi-
mental signature of the plasmon Anderson transition would
be present in the frequency dependent ac conductivity as a
shift between these two general forms. We have examined
the maximum amplitude which is defined as the maximum
value of Re[o(w)] for a full spectra, as a function of k.
Evidently, a local maximum forms precisely at «. as shown
in Fig. 4(c).

Lastly, we mention that o(w) for a 1D elastic system
with short ranged interactions, pinned by disorder was
studied in [14], where an elastic string was pinned into
small domains with effective lengths that define the Larkin
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(c) Predicted experimental signature of the transition. Largest
spectral amplitude Re[op.4(@)] forms a local maximum pre-
cisely at k..

scale R,. If we consider the ac response of the individual
domain it has been predicted that the peak frequency w,
should scale with the domain size w, ~ 1 /R, [14]. This
dependence appears consistent with the shift into a spread
of larger w,, values as shown in Fig. 4(b). Intuitively, one
would expect a smaller domain to vibrate with a higher @,
values.

We conclude by noting that the results of this Letter have
direct relevance to not only IDWC systems but the general
properties of bosonic excitations in random media and
amorphous solids [15,16]. The phase diagram shown in
Fig. 1 is the primary means for linking a systems structural
properties to the localization of its collective modes. A
more general topic that should be pursued further is the
study of delocalization transitions in harmonic oscillator
systems in any dimensionality that have a noncrystalline
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FIG. 5 (color online). The distinct structural phases: The ran-
dom potential V(x), plotted together with relaxed equilibrium
particle coordinates R(x) and the two most extended eigenfunc-
tions, u(R), u,(R), for L = 64. (a) k < k., in the Wigner glass
phase, where the particle array has fractured into small domains
that vibrate with localized plasmon eigenmodes. (b) k > «,,
Quasi-long-range order with extended plasmon eigenmodes.

configuration at equilibrium. Is there a critical power of the
interactions between the oscillators that determines
whether the model is critical or not? For example we
have considered a 1/R Coulomb potential in 1D. Thus,
for a general power law interaction 1/R® in any dimension
d, what is the critical value of « or d for which a «, should
exist? This suggests the possibility of multiple parameter
scaling features (including N) with a more intricate phase
diagram. A broader motivation can be extended recent
developments in biological and optical lattice systems.
Another important avenue to explore further is the role of
the double well potential and the various tunneling and
energy splitting processes. Perhaps the low temperature,
universal properties associated with the double well poten-
tial as generalized by Anderson-Halperin-Varma theory of
amorphous solids plays a role in describing the plasmon
conductance of the glassy regime [17]. Many issues re-
garding quantum-mechanical effects such as dissipation
and the role of plasmon exchange and tunneling through
finite barriers will also be addressed in future
investigations.
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