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We report a study of the phase behavior of multiple-occupancy crystals through simulation. We argue
that in order to reproduce the equilibrium behavior of such crystals, it is essential to treat the number of
lattice sites as a constraining thermodynamic variable. The resulting free-energy calculations thus differ
considerably from schemes used for single-occupancy lattices. Using our approach, we obtain the phase
diagram and the bulk modulus for a generalized exponential model that forms cluster crystals at high
densities. We compare the simulation results with existing theoretical predictions. We also identify two
types of density fluctuations that can lead to two sound modes and evaluate the corresponding elastic
constants.
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At finite temperatures, all crystals contain point defects.
This means that the ratio between N, the number of parti-
cles, and Nc, the number of unit cells is not fixed by
geometry. In the language of Ref. [1], Nc is a ‘‘con-
strained’’ thermodynamic variable. A general variation of
the Helmholtz free energy for a one-component crystal can
be written as

 dF � �SdT � PdV ��dN ��cdNc; (1)

where S is the entropy, T the absolute temperature, P the
pressure, V the volume, � the chemical potential of the
constituent particles, and �c the ‘‘cell chemical potential’’
conjugate to the number of unit cells. If Nc is free to
change, it will take on a value such that �c � 0 to mini-
mize the system’s free energy; hence, its value is a function
of N, V, and T. While in a bulk equilibrium crystal this can
be realized by making adjustments at surfaces, interfaces,
and boundaries, in a simulation box or in a quenched
sample the initial lattice geometry constrains the system.
In simple crystals, however, the equilibrium concentration
of point defects is usually so low that their effect on the
phase behavior is negligible [2,3]. For instance, at melting,
the chemical potential of a hard-sphere crystal with vacan-
cies roughly differs by as little as 10�3kBT from that of a
defect-free crystal for which Nc � N [3].

Interestingly, the situation is dramatically different for
systems that form hypercrystals, such as certain liquid
crystal phases [4], quantum Hall effect bubble solids
[5,6], or, as in this Letter, ‘‘cluster crystals’’ [7–12].
These unusual crystalline materials can have a number of
particles per lattice site much larger than 1. These last
solids form in systems of particles that interact via a
bounded, short-ranged, and purely repulsive pair potential
whose Fourier transform has negative regions, as has been
anticipated for amphiphilic dendrimers [13]. The effect of
�c on the phase behavior then becomes all important,
which has profound consequences for the numerical study

of their phase transitions. The reason is that in almost all
simulations involving crystals, the average number of par-
ticles per unit cell is fixed at the outset of the simulation.
After that, a change in the density � � N=V of the system
may still change P and� but, as the ratioN=Nc is fixed,�c
will in general not be zero. Hence, conventional simula-
tions do not probe the lowest free-energy state of the
crystal. At constant P and T, a small variation in Gibbs
free energy G � F� PV is of the form �dN ��cdNc. If
we fix the ratio nc � N=Nc, then both � and �c are
constant, so we can integrate to obtain

 G � N�� Nc�c (2)

and hence

 Nc�c � F� PV ��N: (3)

For a given N, V, T, and Nc, we can use Monte Carlo (MC)
simulations to compute F, P, and � [14]. As all quantities
on the right-hand side of Eq. (3) can be determined nu-
merically, while Nc is known, we can also compute �c.
This is important because the condition for phase coex-
istence involving cluster crystals requires equality of �, P,
and T in the coexisting phases and of �c � 0 in all
crystalline phases. This latter condition is not normally
considered in the discussion of the Gibbs phase rule.
However, in his original formulation, Gibbs does allow
for the possible existence of other thermodynamic ‘‘fields’’
in addition to �, P, and T [15].

As an application of this approach, we consider the
numerical determination of the phase diagram for the gen-
eralized exponential model (GEM-n) ��rij� � "e��rij=��

n

with n � 4, where " and � determine, respectively, the
energy and the length scales. For convenience, we set them
to unity and consider only reduced units from this point
forward. For n > 2, this system is known to form cluster
solids at high densities [7,8,11,16]. Its phase diagram is
known qualitatively, but not quantitatively: at high T, the
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fluid first freezes into a multiply-occupied bcc phase that
transforms into a multiply-occupied fcc phase at higher
densities. By contrast, upon compression at low T, the
system undergoes a ‘‘normal’’ freezing transition to a
single-occupancy fcc crystal; clustering only sets in upon
further compression of the solid.

We perform discretized-space constant-NVT MC simu-
lations [10,17] for 2000–5000 particles in the temperature
regime where multiple occupancy of the crystal lattice sites
is expected. We determine the value of �c � Nc=V such
that �c � 0 for every T and � state point by starting the
fixed Nc simulations with a reasonable guess for N and V
and iterating until the equilibrium values are located. Via
the common tangent construction, we obtain the coexis-
tence densities from the resulting free-energy curves. We
note that, because the number of particles per lattice site is
free to fluctuate, we cannot use the Einstein-crystal method
to compute the free energy of the solid [14,18]. Rather, we
perform a thermodynamic integration from a reference
state of ideal-gas particles that move in potential wells
centered around the lattice sites [19]. We also note that
for bounded potentials, the Widom particle-insertion
method provides an efficient tool to determine the chemi-
cal potential, even in the dense solid [14,20]. One could
even think of performing a kind of Gibbs-ensemble simu-
lation where two systems exchange both particles and
volume [21]. However, such a simulation would not locate
the correct coexistence point, precisely because the Gibbs-
ensemble method does not impose the condition �c � 0 in
all solid phases. That is why we have to follow the rather
elaborate route via Eq. (3) to locate the points where the
different phases coexist.

In Fig. 1, we compare the T-� phase diagram for the
GEM-4 with the corresponding density-functional theory
(DFT) predictions of Ref. [8]. In the same figure, we also
show the estimate of the freezing transition based on the
results of simulated annealing MC (SAMC) simulations
[10,11]. For the liquid-bcc transition, the liquidus line
predicted by DFT is indistinguishable from the ‘‘exact’’
simulation results, and the solid line is only slightly off.
The SAMC results, although qualitatively correct, predict a
liquid-bcc density gap that is too narrow. This is probably
due to finite-size artefacts in Refs. [10,11]. A crucial test of
the accuracy of DFT is the prediction of the location of the
bcc-fcc transition. As the densities and free energies of
these two phases are very close (Fig. 1 lower inset), minor
inaccuracies in the theory should have a noticeable effect
on the prediction of the transition point. Indeed, we find
that even though the DFT free-energy predictions are only
off by a small amount (not shown), the location of the
phase transition is shifted by roughly 10% in �. The P-T
phase diagram is shown in the upper inset, where the
various state points are accompanied by tangents to the
coexistence curves obtained from the simulation free and
internal energy results by use of the Clausius-Clapeyron

relation [14]. Inspection of the diagram suggests a liquid-
bcc-fcc triple point around Tt � 0:15, which is much lower
than the DFT prediction of Tt � 0:4 [8]. The dramatic shift
follows from the small difference between the slopes of the
liquid-bcc and the bcc-fcc coexistence curves, leaving the
location of the triple point very sensitive to any modifica-
tion of the latter.

It is interesting to understand the reason for the failure of
DFT to predict the location of the solid-solid transition.
One of the core consequences of the DFT treatment of
Ref. [8] is that the volume of the unit cell in a cluster
crystal vc � V=Nc is independent of density, so that the
average site occupation nc / �. This feature is known to
break down in low-density crystals [10] and is also found
here to be slightly inaccurate at intermediate temperatures
and densities. Though the linear relationship holds, the
proportionality is shifted by a constant. As can be gathered
from the inset of Fig. 2, this leads to a nonzero value of
�@vc=@��T for equilibrium states, though the effect van-
ishes with increasing �. This suggests that the DFT ap-
proximation is asymptotically valid. At intermediate
densities, this correction though small might be sufficient
to explain the discrepancy between the DFT and the nu-
merical results.

Since thermodynamic equilibrium is only obtained
when �c � 0, it would appear that once the equilibrium
points are found, all references to the artificial �c field can
be disregarded. Yet, for quantities involving the second
derivative of the constrained free energy, such as the bulk
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FIG. 1. Comparison of the DFT [8] (dashed lines) and SAMC
[10] (dash-dotted lines) T-� phase diagrams with the simulation
results (points) for the GEM-4. The gray zone highlights the
phase coexistence region. Upper inset: P-T simulation phase
diagram (points) with the corresponding Clausius-Clapeyron
tangents to the coexistence curve (black lines). The solid curves
are guides for the eye. Lower inset: shifted free-energy curves
~F � F=VT � 26� (to enhance visibility) at T � 0:2 for the
liquid (dash-dotted gray line), bcc crystal (solid gray line), and
fcc crystal (dashed black line), along with the common tangent
construction (solid black lines) and the coexistence densities
(dots and drop-down lines).
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modulus B � V�@
2F
@V2�N;T , it cannot be neglected unless one

already has the complete equilibrium free-energy curve at
hand. In simulations of single-occupancy crystals, Bvir �

�V�@P@V�N;T;Nc can be computed directly for a given state
point through an approach similar to the virial calculation
of P [22,23]. For cluster crystals, however, the artificial
system conditions further modify the bulk modulus as

 B � �V
�
@P�N;V; T; Neq

c �

@V

�
N;T

� Bvir � V
�
@P
@Nc

�
N;T;V

�
@Nc
@V

�
N;T;�c�0

� Bvir �
�2

nc

�
@�c

@�

�
T;nc

�
1�

�2

nc

�
@vc
@�

�
T;�c�0

�
; (4)

where Neq
c is the number of lattice sites such that the

system remains at equilibrium and where the partial de-
rivatives are evaluated around an equilibrium state point.
Note that a Maxwell relation was used to reformulate the
last pressure derivative. The virial contribution corre-
sponds to a quenched system where particle rearrange-
ments are not possible, so it is an upper bound to
B � Bvir � Bcorr. The results for different state points are
compared in Fig. 2 to the values obtained by direct nu-
merical differentiation of the equilibrium free-energy
curves. Remarkable agreement is obtained between the
two approaches. Also, far from negligible, Bcorr results in
a B about 40% smaller than Bvir, as can also be gathered
from Table I. The leading term to the correction, the
change in �c with density, suggests that deletion of lattice
sites weakens the system’s response to compression. The

changes in lattice site occupancy permitted by particle
overlap thus increase the crystal compressibility compared
to simple affine transformations. Generally, this still trans-
lates into an increase of B with density. Note also that the
temperature dependence is rather weak. Varying T from 0.5
to 1.1, the curves in Fig. 2 appear to collapse onto a master
function, which suggests that entropic effects have little
impact in this regime.

If sound waves have a period shorter than the time it
takes for particles to redistribute between unit cells, then
we can distinguish between two different sound modes in
cluster solids. Density fluctuations stem either from
changes to the unit cell volume vc at fixed cluster occu-
pancy nc or from fluctuations in nc at fixed vc, as schema-
tized in Fig. 3. At constant T and V, the free-energy density
fluctuations �f � �F=V are then

 �f � c11��c�nc�2 � c22�nc��c�2 � 2c12�cnc�nc��c;

(5)

where the elastic constants

 c11 �
1

2�c

�
@�
@nc

�
�c

; c22 �
1

2n2
c

�
@��c ��nc�

@�c

�
nc

;

c12 �
1

2�

�
@���c�
@�c

�
nc

can be obtained by numerically differentiating the simula-
tion results. A change of variables to sound-mode space
x� � �

�������
c11
p

�c�nc �
�������
c22
p

nc��c�=
���
2
p

, diagonalizes the
expression

 �f � �1�!�x2
� � �1�!�x

2
� (6)

TABLE I. Bulk modulus decomposition and the sound mode
elastic and coupling constants for three different multiply-
occupied crystal state points.

T � B Bvir Bcorr c11 c12 c22 !

0.5 4.3 48.2 89.8 41.6 1.335 2.95 10.03 0.805
0.8 6.2 100.5 177.1 76.6 1.346 3.05 15.35 0.670
1.1 8.2 176.6 308 131.0 1.350 3.10 21.0 0.582

FIG. 3 (color online). Density fluctuations in multiple occu-
pancy crystals either stem from (left) fluctuations in the unit cell
volume or from (right) rearrangements in particle distributions
between lattice sites.
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FIG. 2. Bulk modulus results from direct differentiation of the
free energy of the stable crystal structures [bcc (gray) and fcc
(black) at T � 0:5 (solid line), T � 0:8 (dashed lined), and T �
1:1 (dash-dotted line)], along with the values at three state points
(stars) computed using Eq. (5). The virial contribution Bvir is
shown for reference (crosses). The breakdown of B is also given
in Table I. Inset: variation of the lattice volume with density in
equilibrium for these same systems. DFT presents this quantity
as zero.
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with coupling constant ! � c12=
�������������
c11c22
p

. The elastic co-
efficients and the coupling constant are presented for three
different state points in Table I. Though these results are
insufficient to paint the full physical picture, a couple of
comments are in order. First, the c11 term corresponds to
the hopping of particles and is expected to be heavily
damped, while the c22 term is the equivalent of a longitu-
dinal sound wave, which will propagate for long wave-
lengths. Second, for the temperature and density range
under study, the first constant and the cross term increase
only very little with T and �, while the c22 more than
doubles. The increased density from one state point to the
next is most certainly responsible for that, since higher
temperatures would tend instead to facilitate lattice spac-
ing fluctuations for a constant repulsive energy barrier. To
the best of our knowledge, no theoretical predictions exist
with which to further compare these results.

Starting from the formalism developed by Swope and
Andersen [1], we have presented how simulations and
experiments of multiple-occupancy crystals critically de-
pend on the chemical potential associated with the inser-
tion of a lattice site. Taking this into account within
simulations allows for the precise determination of the
equilibrium phase diagram of cluster crystals, which is
much more subtle than for the traditional, single-
occupancy sort. Also, even though the chemical potential
associated with lattice site insertion is strictly zero in
equilibrium, its constrained derivatives are not. This has
considerable impact on the calculation of the bulk modulus
and the two sound modes’ elastic constants, for example.
Departing more drastically from thermodynamics, long-
lived nonequilibrium structures of cluster-crystal forming
dendrimers might even be observable in rapidly quenched
experimental systems, if the resulting ordered solids hap-
pen to end up in states with �c � 0. These metastable
crystals would then undergo phase transitions at different
state points than those predicted by equilibrium thermody-
namics. Finally, the generalization of the free-energy and
elastic constant calculation methodology presented here
has a broader applicability than for multiply-occupied
crystals. It is the appropriate way to simulate systems
with hyperlattices in general, such as in the quantum Hall
effect as well as for certain liquid crystal phases, micellar
crystals, or microphase separated colloids.
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