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Using time-dependent density-functional theory we calculate from first principles the rate of energy
transfer from a moving proton or antiproton to the electrons of an insulating material, LiF. The behavior of
the electronic stopping power versus projectile velocity displays an effective threshold velocity of
�0:2 a:u: for the proton, consistent with recent experimental observations, and also for the antiproton.
The calculated proton/antiproton stopping-power ratio is �2:4 at velocities slightly above the threshold
(v� 0:4 a:u:), as compared to the experimental value of 2.1. The projectile energy loss mechanism is
observed to be extremely local.
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The interaction of charged particles with matter has been
a subject of extensive research since the discovery of
subatomic particles [1]. Ions moving through solids gradu-
ally transmit their kinetic energy to electronic excitations
of the host and deposit it along their path. The maximum of
this deposited energy per unit path length is the so-called
Bragg peak and it occurs shortly before the particle stops.
Hence the importance of studying the electronic energy
loss of slow ions (with velocities below the Bohr velocity)
traveling through solids. For metals, the understanding of
this problem has been steadily progressing over the years
[1]. For insulators, however, experimental results remain
unexplained even for simple systems. This is particularly
true at low velocities (the threshold effect) [2,3], where the
contribution from nuclear collisions conceals the elec-
tronic stopping [4].

A detailed quantitative knowledge of these processes is
required to understand the damage produced in materials
when exposed to radiation. For ceramic materials devised
for the encapsulation of nuclear waste [5] the prediction of
durability over extremely long times is crucial. Radiation-
damage simulations performed to date [6,7] rely on em-
pirical force fields obtained from fits to low-energy prop-
erties. The actual interatomic forces could be enormously
altered, however, by the local electron heating produced by
the electronic stopping.

In the semiclassical formalism, the electronic energy
loss rate is given by the response of the system to the
external potential, dE

dt � �Zv �Eind, where Z and v are
the charge and velocity of the projectile, and Eind is the
induced electric field in the target material. Hence, to first
order, linear-response theory can be used to give the stop-
ping power (SP)—the energy lost per unit path length—in
terms of the dynamical dielectric function of the material.
For metals, this formalism shows that the SP is linear at low

velocities, dEdx � �Ze�
2v [8,9], reflecting that no minimum

energy is required to excite electron-hole pairs. It must be
remembered, however, that the dielectric approach is not
valid at low ion velocities, and nonlinear effects cannot be
neglected [1].

A different behavior is expected in wide band-gap in-
sulators, given the finite energy required to excite electrons
[10]. For protons moving through noble gases [11], which
also display a large minimum excitation energy, a velocity
threshold has been observed experimentally [12], and ex-
plained in terms of the quantization of energy levels and
charge exchanges [13]. However, for solid insulators the
situation is unclear. No threshold effects were originally
observed in Al2O3, SiO2, or LiF, and the linear dependence
dE=dx / v was observed down to velocities of about
0.3 a.u. [2,14,15].

For protons under grazing incidence in LiF(001), and
below �0:2 a:u: a threshold behavior was reported [16].
Under these conditions the proton does not penetrate the
solid, and charge exchange is identified as the dominant
mechanism for electronic stopping, with local electron
capture from F� ions, giving rise to H0 and H�. More
recent experiments on thin LiF films show an apparent
velocity threshold near 0.1 a.u. [3]. The different experi-
mental setup (transmission) suggests a different physical
stopping mechanism, based on electron-hole pair excita-
tions. A threshold behavior is expected, and has been
qualitatively predicted from linear response and from per-
turbation theory calculations. These approximations, how-
ever, grossly underestimate the SP at low velocities, thus
exaggerating the threshold [17]. A theoretical description
beyond these approximations is needed.

In this Letter we present a first-principles approach to
the nonperturbative study of realistic solid-ion interactions.
We follow the explicit time evolution of the electronic
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states of the host crystal as an external particle propagates
through the system, by means of time-dependent density-
functional theory (TD-DFT) [18]. We use here this scheme
to understand the SP threshold effect and stopping mecha-
nisms in LiF, a well-studied characteristic insulator, finding
reasonable agreements with measured data. Most impor-
tantly, however, this study sets the scene for a promising
line of theoretical simulations, assesses its possibilities and
offers new insights into the stopping process.

The energy transmitted to the electrons from a constant-
velocity moving ion is monitored. Total energy is thus not
conserved since the energy loss of the projectile is ne-
glected (its large mass ensures a negligible decline in its
velocity on the time scales of the simulations). As the
charged particle moves, the time-dependent Kohn-Sham
(KS) equation [18] defines the dynamics of effective
single-particle states (and thereby the electronic density
and energy) under the external potential generated by the
projectile and the crystal of Li and F nuclei.

The calculations were done using the SIESTA ab initio
method [19,20], in its time-evolving TD-DFT implemen-
tation [21], using the instantaneous local density approxi-
mation (LDA) to exchange and correlation [22]. The 1s
core electron pair of F was replaced by a norm-conserving
pseudopotential in the fully nonlocal form. The 1s elec-
trons of Li were explicitly included in the calculation. A
double-� polarized basis was considered for the valence
electrons (single-� for the 1s of Li), with an energy shift of
100 meV [20]. The grid cutoff [20] for integration was
118 Ry. The lattice parameter obtained for bulk LiF was
3.98 Å, slightly smaller than the experimental value 4.03 Å,
as expected for LDA. The projectile (proton, p, or anti-
proton, �p) was described by the bare � 1

r potential [23]
instead of pseudopotentials, in order to treat p and �p on the
same footing.

Periodic boundary conditions were used throughout.
The supercell size was chosen so as to minimize the
spurious effects of the repetition while keeping manage-
able computational demands. After convergence tests, a
4� 4� 4 supercell of 128 atoms was selected, such that a
particle moves �11 �A before reentering the box. A single
k point (�) was used for integrations in the Brillouin zone.
The projectile was initially put in the center of a crystal
cage and the time-independent DFT solution was obtained
to define the initial state for the subsequent evolution. It
was then moved with constant velocity in a straight line
trajectory along a [110] channel. A rigid lattice was as-
sumed [4]. The time-dependent KS equation was then
solved numerically by discretizing time as described in
Ref. [21]. Using a time step of 1 asec, the wave functions
were then propagated for several femtoseconds. The total
electronic energy was recorded as a function of time and
the SP, dEdx , was extracted.

Figure 1 shows the total electronic energy of the system
as a function of displacement for different velocities of the
projectile. At low velocities the adiabatic behavior is re-

covered, with no net energy transfer, just the expected
oscillation of the total energy with the position of the
projectile in the crystal. At higher velocities the oscilla-
tions are superimposed to an underlying energy increase
with time. After a remarkably short transient period
(around 0.3 fs), the energy increase stabilizes to an essen-
tially stationary regime, in which the energy difference
between consecutive equivalent lattice positions of the
projectile remains constant. The SP is then extracted
from the average slope of this stationary regime. The
results for p and �p are presented in Fig. 2 (closed and
empty circles, respectively) along with the available ex-
perimental data. A velocity threshold is apparent in our
calculated SP and the measurements for p [3]. This is in
contrast with the linear behavior observed for metals [1].
The calculated thresholds of �0:2 a:u: are consistent with
proton experiments, [3,15] much smaller than those pre-
dicted for insulators by linear-response theory [17], and a
forecast for antiproton experiments at lower energies.

A considerable discrepancy is still observed when com-
paring the calculated and the measured values. A factor of
�2 would be accounted for by the relation between chan-
nelling conditions and the average over random trajectories
[24,25]. Its effect is shown in Fig. 2. Technical reasons
account for part of the remaining discrepancy [26]. For p
we can improve the basis by including orbitals along the
projectile’s path (a sp single-� hydrogen basis set every
0.5 Å). This increases the SP (crosses in Fig. 2), e.g., from
1.6 to 2:8 eV= �A for v � 0:46 a:u:, and brings it into better
agreement with experiment. Unfortunately, such an aug-
mented basis set is only justified for p. At a more funda-
mental level, discrepancies are expected from the errors in
electronic spectra around the band gap given by instanta-
neous LDA in TD-DFT (even if it includes a RPA correc-
tion on KS eigenvalues) [27].

Figure 2 shows a clear difference between p and �p (we
henceforth focus on the results for the unbiased basis [26]),
in contrast with the invariance under charge-sign change
expected from perturbative treatments. Experiments show
that the energy loss for protons is approximately twice as
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FIG. 1. Total electronic energy as a function of displacement
for several proton velocities.
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high as for antiprotons [15], a consequence of the different
kind of screening [28]. Slightly above the threshold (v�
0:4 a:u:) we obtain a SP ratio of 2.4, that compares well
with the experimental value of 2.1 [15].

Linear response predicts a quadratic dependence of the
SP on the projectile charge q. Figure 3 presents the calcu-
lated SP over q2. The smooth behavior at the origin in-
dicates that there are no substantial biases in the way the
stopping mechanism is described for p and �p. The slope
near the origin corresponds to the q3 dependence, while the
bending corresponds to q4 and higher terms. The displayed

behavior, and particularly the sign of both terms, is similar
to that observed for metals [29].

We now analyze the locality of the energy absorption in
terms of Mulliken charges [30]. Although they are known
to be unreliable in their explicit dependence on the basis
set, their changes for the fixed basis set are much more
indicative. By comparing the atomic charges obtained
dynamically and adiabatically (a static self-consistent cal-
culation with the external potential at the same instanta-
neous position), insights are obtained into the stopping
process. Figure 4 shows this comparison for the proton
case, where the following is observed: (i) The screening of
the proton is enhanced in the dynamic case (our basis set
describes this screening by a charge transfer from F to Li);
(ii) a delay is apparent in the dynamical screening, which is
the origin of the dissipation; (iii) the electronic excitation
process is extremely local: the changes observed in atoms
closest to the trajectory are much larger than any other, and
the dynamic effect is only noticeable when the projectile is
very close to the ion.

The locality of the energy transfer is confirmed when
calculating the energy absorbed by a small cluster of LiF
(Li6F5	). The inset of Fig. 2 shows a striking similarity in
the overall v-dependence of the energy absorbed by the
cluster and the SP in the solid. If we took the effective path
length in the cluster as 1.4 Å (the number of valence
electrons in the cluster corresponds to one formula unit),
both SPs would be indeed very similar [31]. In the solid,
the energy accumulated along the path would then diffuse
away at longer time scales (corresponding to the effective
band width), defining a wake. A tentative definition of local
energy [32] shows well differentiated time scales for the
excitation by the projectile, and for the ensuing out-
diffusion (not shown). The short-ranged initial excitation
can be rationalized in terms of the electronic localization
length scale relevant to dielectric response [33], which is
expected to be very short for LiF. Similar locality in the
energy loss mechanism has been recently found in jellium
clusters, however [34].

-1 -0.5 0 0.5 1
q

1

2

3

(1
/q

2 ) 
dE

/d
x

FIG. 3. Dependence of 1
q2

dE
dx with the charge q of the external

projectile, for v � 0:46 a:u:. The stopping power is in eV= �A,
and q in electron charge units.
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FIG. 4. Electron population on Li atoms close to the proton
trajectory versus position of the projectile along it. Adiabatic
(dynamic) charges are shown by circles (dashed lines). The
position of the maximum in the adiabatic curve occurs when
the projectile is closest to the atom (�1:2 �A). The almost
constant line corresponds to a second closest Li atom, 2.3 Å
away from the trajectory.

0.1 0.3 0.5
v (a.u.)

1

2

3

E
ne

rg
y 

lo
ss

 (
eV

)

0.1 0.2 0.3 0.4 0.5 0.6
v (a.u.)

0

1

2

3

4
dE

/d
x 

(e
V

/Å
)

p      Li  F 6
5+

∆E

p

p

(eV)

FIG. 2. Electronic stopping power dE
dx as a function of particle

velocity v for p (full symbols) and �p (empty symbols). Circles
are the calculations while triangles and squares indicate, respec-
tively, the measured values of Refs. [3,15]. Gray triangles and
squares are these measured values scaled by 1=2, for direct
comparison with the calculations, which only considered chan-
nelling trajectories. Crosses are our results for p with additional
basis orbitals along the projectile’s path (see text). The inset
shows the excess energy acquired by a octahedral Li6F5	 iso-
lated cluster on the passage of a p on an analogous trajectory to
that of the solid.
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A characterization of the charge state of the projectile
[35,36] has not been attempted. The present calculations
allow for the establishment of charge states of any kind
within the constraint that the electronic charge of the
simulation box is conserved. It is clear that the midgap
state travels with the proton, and that it becomes partly
populated. It is not clear, however, that the charge associ-
ated to that state represents a meaningful definition of the
charge state of the projectile, since whether the screening
charge builds up as it passes or travels with it is not
determined by the population of that state. This effect
will be explored in further works.

In conclusion, we have presented a general approach for
the nonperturbative first-principles study of the electronic
stopping power in solids. New insights into the electronic
SP in insulators have been provided for protons and anti-
protons in LiF.
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F. Aumayr, M. Peñalba, A. Arnau, J. M. Ugalde, and P. M.
Echenique, Phys. Rev. Lett. 79, 4112 (1997).

[3] M. Draxler, S. P. Chenakin, S. N. Markin, and P. Bauer,
Phys. Rev. Lett. 95, 113201 (2005).

[4] A. Mertens and H. Winter, Phys. Rev. Lett. 85, 2825
(2000).

[5] I. Farnan, H. Cho, and W. J. Weber, Nature (London) 445,
190 (2007).

[6] K. Trachenko, M. T. Dove, E. Artacho, I. T. Todorov, and
W. Smith, Phys. Rev. B 73, 174207 (2006).

[7] B. P. Uberuaga, R. Smith, A. R. Cleave, F. Montalenti, G.
Henkelman, R. W. Grimes, A. F. Voter, and K. E. Sickafus,
Phys. Rev. Lett. 92, 115505 (2004).

[8] R. H. Ritchie, Phys. Rev. 114, 644 (1959).
[9] M. Kitagawa and Y. H. Ohtsuki, Phys. Rev. B 9, 4719

(1974).
[10] E. Artacho, J. Phys. Condens. Matter 19, 275211 (2007).
[11] R. Cabrera-Trujillo, J. R. Sabin, Y. Öhrn, and E. Deumens,
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