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A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the
presence of a small normal magnetic field component varying along the sheet. These waves and instability
are related to the existence of two gradients of the tangential (B�) and normal (Bn) magnetic field
components along the normal (rnB�) and tangential (r�Bn) directions with respect to the current sheet.
The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or
negative. In the stable region, the kinklike wave mode is interpreted as so-called flapping waves observed
in Earth’s magnetotail current sheet. The kink wave group velocity estimated for the Earth’s current sheet
is of the order of a few tens of kilometers per second. This is in good agreement with the observations of
the flapping motions of the magnetotail current sheet.
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Introduction.—Thin current layers are typical structures
in the heliosphere, including the solar corona, solar wind,
and planetary magnetospheres. We address some of the
magnetohydrodynamic aspects concerning the stability of
current layers which are still poorly understood. In par-
ticular, CLUSTER observations in Earth’s magnetotail
current sheet indicated the appearance of strong wave
perturbations propagating across the current sheet. Many
event studies indicated very large current sheet variations
and a predominant wave propagation in the transverse
direction with respect to the magnetic field plane. The
existence of such kinds of waves associated with flapping
motions was confirmed in many statistical studies [1–7]
which allowed one to identify them as the ‘‘kink’’-like
perturbations. The plasma sheet flapping observations are
interpreted as crossings of a quasiperiodic dynamical struc-
ture produced by almost vertical slippage motion of the
neighboring magnetic flux tubes. The frequency of the
flapping motions, estimated from observations, is wf �
0:035 s�1 [1]. For a majority of the observed events [4],
a group speed of the flapping waves was found to be in the
range of a few tens (30–70) kilometers per second. The
wavelengths and spatial amplitudes are estimated to be of
the order of 2–5 RE (RE is the Earth’s radius) [7].

A preferential appearance of one (kinklike) mode of the
flapping motion was reported by [3]. CLUSTER observa-
tions give rise to the assumption that the flapping motions
are notably more frequent in the central part of the tail than
near the flanks. In the near-flank tail regions the motions of
flapping waves are predominantly from the center to the
flanks [2]. These experimental results confirm an internal
origin of the flapping motions, due to some processes (like
magnetic reconnection) localized deep inside the magne-
totail. On the basis of CLUSTER observations of recon-
nection events, a relationship between the flapping motion

and the reconnection process was investigated by [8].
During the reconnection events the current sheet exhibits
strong flapping motions that propagate towards the flank of
the tail.

With regard to a theoretical aspect of the problem, the
ballooning-type mode in the curved current sheet magnetic
field was claimed to be able to propagate azimuthally in
flankward directions from the source [9]. This ballooning
theory was applied in the WKB approximation implying
the condition that the wavelength scale is much less than
the curvature radius. This condition can hardly be fulfilled
in the plasma sheet with a small normal component of the
magnetic field. Another point is that according to the
theory of [9], both kinklike and ‘‘sausage’’-like deforma-
tions of the current sheet are equally possible, and the
question arises about a reason, why the observed flapping
perturbations of the current sheet are mainly associated
with the kinklike wave modes.

In this Letter, we propose a new approach to explain the
existence of the kinklike flapping wave oscillations prop-
agating across the current sheet. In a framework of a rather
simple magnetohydrodynamic consideration, we elucidate
a physical reason of the flapping wave oscillations of the
current sheet, which is related with gradients of the tan-
gential and normal magnetic field components with respect
to the normal and tangential directions, respectively.

Statement of problem.—A geometrical situation of the
problem and coordinate system are illustrated in Fig. 1. We
apply a system of incompressible ideal magnetohydrody-
namics for nonstationary variations of plasma sheet pa-
rameters
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 r � V � 0; r �B � 0: (3)

Here V, B, �, P are the velocity, magnetic field, density,
and total pressure, respectively. The total pressure is de-
fined as the sum of the magnetic and plasma pressures. We
consider specific wave perturbations propagating across
the magnetic field lines, which are much slower than the
magnetosonic modes. In this case the incompressible ap-
proximation seems to be appropriate.

We focus our study on the very slow wave modes exist-
ing only in the presence of a gradient of the Bz component
in the magnetotail current sheet along the x direction. The
background conditions are considered to be rather simple
with a slow dependence of the Bz component on the x
coordinate

 Bx � B�bx��z�; Bz � "B�bz� �x�; By � 0;

V � 0; �y � y=�; �z � z=�; �x � x=Lx:
(4)

Here � is a thickness of the current sheet, and Lx is a length
scale of the Bz variation along the current sheet.

We introduce normalized small perturbations marked by
sign ‘‘tilde’’ which are considered to be functions of time
and two spatial coordinates (y, z)

 Bx � B�	~bx � bx� �z�
; By � "B� ~by;

Bz � "B�	bz� �x� � ~bz
; P � P0 � ~PB�2=�4��;

Vx � ~vxVA; Vy � ~vyVA; Vz � ~vzVA;

�t � tVA=�; VA � B�=
������������
4���

p
; � � �=Lx:

(5)

Here P0 is the background total pressure, the parameter "
means the ratio of the background normal and maximal
tangential components of the magnetic field, and the pa-
rameter � characterizes the gradient of the normal mag-
netic field component. For the background conditions
considered in our model [Bz� �x�, Bx��z�], equation r �B �
0 is fulfilled for arbitrary independent parameters " and �.

Linearizing Eqs. (1)–(3) for the normalized perturba-
tions, neglecting high order terms ��2" and �"2, we
assume �� " and retain the main term ��".

Substituting Fourier harmonics [ / exp�i �! �t�i �k �y�], we
obtain finally a system of equations for Fourier amplitudes

 i �!~vx � "
�

~bz
dbx
d �z
� bz

d~bx
d �z

�
; (6)

 i �!~vy � i �k ~P � 0; i �!~vz �
d ~P
d �z
� "�~bx

dbz
d �x

; (7)

 i �!~bz � bz
d~vz
d �z
� �~vx

dbz
d �x
� 0; i �!~by � bz

d~vy
d�z
� 0;

(8)

 i �!~bx �
dbx
d�z

~vz � 0; �i �k~vy �
d~vz
d �z
� 0: (9)

In this system of equations the derivative dbz=d �x is as-
sumed to be constant, and all other quantities are consid-
ered to be not dependent on the x coordinate. Therefore
Eqs. (6)–(9) are treated as a system of ordinary differential
equations with respect to the �z coordinate. Excluding ~bx
and ~bz in Eq. (6), we derive

 ~v x	� �!2 �U��z�
 � 0; U��z� � "�
dbx
d �z

dbz
d �x

: (10)

Generally, for a nonconstant U��z�, Eq. (10) yields ~vx � 0.
From Eqs. (7)–(9), we finally obtain a second order

ordinary differential equation for the ~vz velocity perturba-
tion

 

d2 ~vz
d�z2

� �k2 ~vz

�
U� �z�

�!2 � 1
�
� 0: (11)

Further for simplicity we consider a piecewise constant
function U��z�

 U��z� � "�; �1 � �z � 1; U��z� � 0; j�zj> 1;

(12)

which means that the current density is assumed to be
constant within the current sheet.

Results.—A choice of the piecewise constant function
U��z� allows us to find analytical solutions which are of two
kinds, kinklike and sausagelike modes. The kinklike mode
is characterized by displacement of the current sheet cen-
ter, and even function ~vz��z�

 ~v z � C exp	� �k�j�zj � 1�
; j�zj> 1; (13)

 ~v z � D cos���z�; � � �k
������������������������
"�= �!2 � 1

q
; j �zj � 1:

(14)

An odd function ~vz��z� is relevant to the sausagelike mode
characterized by variations of the thickness of the current
layer without a displacement of its center

J

FIG. 1. Geometrical situation of the problem.
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 ~v z � C exp	� �k��z� 1�
; �z > 1;

~vz � �C exp	 �k��z� 1�
; �z <�1;

~vz � D sin���z�; � � �k
������������������������
"�= �!2 � 1

q
; j �zj � 1:

(15)

Applying continuity conditions for ~vz and the first deriva-
tive d~vz=d�z at the current layer boundaries, we obtain
algebraic system corresponding to the kink mode

 C � D cos���; �kC � �D sin���; (16)

and also we find a system for the sausage mode

 C � D sin���; � �kC � �D cos���: (17)

Setting the determinants to vanish, we derive two equations
corresponding to the kink and sausage modes, respectively

 tan��� �
�k
�
�“kink”�; tan��� � �

�
�k
�“sausage”�: (18)

These equations have discrete sequences of roots
�1; �2; . . . ; �n; . . . . The main root is the minimal � which
corresponds to the maximal frequency.

By numerical solving these equations, we obtain two
main roots �k;s which determine the dimensional frequen-
cies !k;s as functions of wave number for the kink and
sausage modes

 !k;s � !f
k��������������������������

k2�2 � �2
k;s

q ; !f �

�����������������������������
1

4��
@Bx
@z

@Bz
@x

s
:

(19)

Here !f means a characteristic flapping frequency propor-
tional to the square root of the multiplication of two
gradients of the background magnetic field components,
@Bx=@z and @Bz=@x. The dimensionless functions!k;s=!f

are presented at the top panel in Fig. 2. Frequencies are
monotonic functions of wave number, and they increase to
the maximal asymptotic value !f for k�! 1. The group
wave velocity is shown in Fig. 2 as functions of wave
number (the second panel).

The flapping wave perturbations become unstable when
the multiplication of two magnetic gradients becomes
negative. In particular, for the Earth’s plasma sheet this
condition corresponds to the case of decreasing Bz compo-
nent towards Earth. The growth times of the instability for
the kink and sausage modes are given by formulas

 �k;s � �f

�������������������������
�2
k;s � k

2�2
q

k�
; �f � 1=

�����������������������������
�1

4��
@Bx
@z

@Bz
@x

s
:

(20)

The instability growth times (�k;s=�f) are shown in Fig. 2
(bottom panel) as functions of wave number for the two
wave modes. One can see from the figure that the unstable

kink mode develops much faster than the sausage mode. In
particular, for k� � 0:7 the ratio of growth times is
�s=�k � 2. Figure 3 illustrates a perturbation of the current
sheet and the directions of plasma motion corresponding to
the kink mode flapping.

A qualitative explanation of the flapping instability and
waves corresponding to the obtained solution is the follow-
ing. Let us consider a plasma element of a unit volume at
the center of the current layer as shown in Fig. 4. Initially,
the equilibrium condition is assumed to be fulfilled

 

@P
@z
�

1

4�
Bx
@Bz
@x

: (21)

If we shift the plasma element along the z direction, the
restoring force appears which is determined by a difference
of two terms, �rP�z and 	1=�4��
�B � rB�z. In the new
position of the magnetic tube element, the resulting force
will be

FIG. 2. Frequency, group velocity, and instability growth time
as functions of wave number for two wave modes.

v v

B

FIG. 3. Illustration to the kink mode. Perturbation of the
current sheet and the corresponding directions of plasma motion.
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1

4�
Bx��z�

@Bz
@x
� �

1

4�
�z
�
@Bx
@z

@Bz
@x

�
z�0
: (22)

This force accelerates plasma in the z direction

 �
@2�z

@t2
� ��z

1

4�
@Bx
@z

@Bz
@x

: (23)

This equation yields the characteristic flapping frequency
!f, which is proportional to the square root of the gradients
of the magnetic field components. This qualitative expla-
nation of the instability is illustrated in Fig. 4 where panels
(a) and (b) correspond to the stable and unstable situations,
respectively. The current sheet is stable when the back-
ground total pressure has a minimum at the center of the
sheet. Instability condition is reached in the opposite case
when the total pressure has a maximum at the center of the
sheet.

For example, we estimate this frequency for the parame-
ters which seem to be reasonable for the conditions of the
current sheet in the Earth’s magnetotail,
 

Bx� 20 nT; Bz� 2 nT; ��RE; np� 0:1 cm�3;

k�� 0:7; @Bz=@x�Bz=Lx; Lx� 5RE: (24)

For these parameters we find the characteristic flapping
frequency !f � 0:03 s�1, and also the group velocity
Vg � 60 km=s.

Summary.—The flapping instability and waves are ana-
lyzed for a current sheet in a presence of two gradients of
the Bx and Bz magnetic field components along the z and x
directions, respectively. Both of these gradients play a
crucial role for the stability of the current sheet. The
instability occurs in the regions of the current layer where
the multiplication of two gradients is negative. In particu-
lar, the instability can arise in a vicinity of a localized
thinning of the current sheet [Fig. 4(b)]. In stable regions,
the flapping waves are associated with the so-called
‘‘bursty bulk flows’’ or BBF’s [3], which are the magnetic
tubes rapidly moving through the center of the current
sheet towards the Earth. These BBF’s are considered to
be the sources of the flapping wave oscillations propagat-

ing from the center of the current sheet towards the flanks
in the 
y directions.

The analytical solution is obtained for the simplified
model of the current layer with a constant current density.
The frequency and the growth rate for the kink mode are
found to be much larger than those for the sausage mode.
For both modes, the frequencies are monotonic increasing
functions of the wave number. The corresponding wave
group velocities are decreasing functions of the wave
number, and they vanish asymptotically for high wave
numbers. For the typical parameters of the Earth’s current
sheet, the group velocity of the kinklike mode is estimated
as a few tens of kilometers per second that is in good
agreement with the CLUSTER observations. A strong
decrease of the group velocity for high wave numbers
means that the small scale oscillations propagate much
slower than the large scale oscillations. Because of that,
the propagating flapping pulse is expected to have a
smooth gradual front side part and a small scale oscillating
backside part.

The double-gradient flapping waves studied in our
model propagate in the direction perpendicular to the
planes of the background magnetic field lines, and thus
they cannot be stabilized by the magnetic tension. For the
kink mode, the magnetic field planes are just shifting with
respect to each other.

The effects of compressibility can be neglected when the
phase speed of wave perturbations is much less than the
sonic speed. This condition is fulfilled for our solution. The
assumption �� " used in our model seems to be appro-
priate for steady magnetotail conditions. For example, it is
well fulfilled in the current sheet equilibrium solution of
Kan [10]. The neglected second order terms O�"2� are
responsible for the small effects related to the Alfvén
waves propagating in the z direction. These second order
effects are subjects for future study.
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FIG. 4. Illustration to the kink flapping waves (a) and insta-
bility (b) in cases of positive and negative gradient of Bz.
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