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We experimentally investigate the critical behavior of a phase transition between two topologically
different turbulent states of electrohydrodynamic convection in nematic liquid crystals. The statistical
properties of the observed spatiotemporal intermittency regimes are carefully determined, yielding a
complete set of static critical exponents in full agreement with those defining the directed percolation class
in 2� 1 dimensions. This constitutes the first clear and comprehensive experimental evidence of an
absorbing phase transition in this prominent nonequilibrium universality class.

DOI: 10.1103/PhysRevLett.99.234503 PACS numbers: 47.52.+j, 05.70.Jk, 64.70.Md, 68.18.Jk

Transitions into an absorbing state, i.e., a state from
which a system can never escape, arise from simple mecha-
nisms expected to be widespread in nature. Examples
abound in a wide variety of situations in physics and
beyond [1], ranging from spreading processes like epidem-
ics and forest fires, to spatiotemporal chaos, catalytic re-
actions, and calcium dynamics in cells, etc. Moreover, a
host of problems, such as synchronization [2], self-
organized criticality [3], and wetting [4], can be mapped
onto them. Having no equilibrium counterparts, absorbing
phase transitions are central in the ongoing search for the
relevant ingredients determining universality out of
equilibrium.

Over the past 25 years or so, it has been well established
both in theory and in simulations that the vast majority of
absorbing phase transitions share the same critical behav-
ior, constituting the so-called directed percolation (DP)
universality class [1]. This is not surprising since the DP
class corresponds to the simplest case of a single effective
absorbing state in the absence of any extra symmetry or
conservation law, as conjectured by Janssen and
Grassberger [5,6] and demonstrated by hundreds of nu-
merical models [1].

However, the situation is quite different at the experi-
mental level. Searching for evidence of DP critical behav-
ior, a string of experiments have been performed [7], but
the results remained unsatisfactory: they could not yield a
complete set of critical exponent values in agreement with
those defining the DP class (Table S1 [8]). In view of this
state of affairs, the importance of finding at least one fully
convincing experimental realization of DP-class scaling
has been stressed [9]. The main difficulty probably stems
from the fact that one must exclude long-range interactions
[1], work with macroscopic systems to tame quenched
disorder [10], and study them over long enough scales so
that the critical behavior is unambiguously measured. We
have overcome these difficulties and report here on a clear
experimental observation of DP criticality.

We chose to work within electrohydrodynamic (EHD)
convection regimes, which occur when a thin layer of

nematic liquid crystals is subjected to an external voltage
strong enough to trigger the Carr-Helfrich instability [11].
One advantage of this system is that very large aspect ratios
can easily be realized, and that typical time scales are small
(of the order of 10 ms). We focused on a transition between
two topologically different turbulent states, called dynamic
scattering modes 1 and 2 (DSM1 and DSM2), observed
successively as V, the amplitude of the voltage, is in-
creased [11,12]. The difference between the two states
lies in their density of topological defects in the director
field [Fig. 1(a)]. In the DSM2 state, these defects, called
disclinations, are created and elongated considerably due
to shear, leading to the loss of macroscopic nematic order
and to a lower light transmittance. In DSM1, they are
hardly elongated and their density remains very low.

Our quasi-two-dimensional cell is made of two parallel
glass plates separated by a polyester film spacer of thick-
ness d � 12 �m. The inner surfaces are covered with
transparent electrodes of size 14 mm� 14 mm, coated
with polyvinyl alcohol and then rubbed in order to orient
the liquid crystals planarly in the x direction. The cell is
filled with N-(4-methoxybenzylidene)-4-butylaniline
(MBBA) doped with 0.01 wt. % of tetra-n-butylammonium
bromide, maintained at temperature 25 �C with a standard
deviation of 2� 10�4�C, and illuminated by a stabilized
light source made of white light-emitting diodes. A CCD
camera records the light transmitted through the plates.
The observed region is a central rectangle of size
1217 �m� 911 �m. Since there is a minimum linear
size of DSM2 domains, namely, d=

���

2
p

[12], we can
roughly estimate the number of degrees of freedom to be
1650� 1650 for the convection area and 143� 107 for the
observation area. Note that the meaningful figure is that of
the total system size, which is at least 4 orders of magni-
tude larger than in earlier experimental studies [7]. In the
following, we vary V and fix the frequency at 250 Hz,
roughly one-third of the cutoff frequency 820� 70 Hz.

Closely above the threshold Vc marking the appearance
of DSM2, a regime of spatiotemporal intermittency (STI)
is observed, with DSM2 patches moving around in a DSM1
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background [Fig. 1(b) and Movie S1 [8] ]. This suggests an
absorbing phase transition [13] with DSM1 playing the
role of the absorbing state [Fig. 1(d)]. Prior to any analysis,
we must distinguish DSM2 domains from DSM1. This
binary reduction can be easily performed by our eyes, so
we automated it using the facts that DSM2 regions look
darker, have longer time correlation, and have minimum
area of d2=2 [12] (see Ref. [8] for details). A typical result
is shown in Fig. 1(c) and Movie S2 [8]. Figure 1(e) shows
spatiotemporal diagrams obtained by that means in the
steady STI state. They illustrate that the key ingredient is
present: active DSM2 patches evolve in space-time essen-
tially by contamination of the DSM1 absorbing state and
recession from the DSM2 state [as sketched in Fig. 1(d)].
In this context, the order parameter � is just the ratio of the
surface occupied by active (DSM2) regions to the whole
area.

We first observe the steady-state STI regime under con-
stant voltages V, in the range of 34:858 V � V �
39:998 V. The voltage for the onset of steady roll convec-
tion is V� � 8:95 V. The time average of � in the steady
state, ��, is taken over the period 1000 s< T < 8000 s,
which is longer than 1000 correlation times. It shows a
continuous and algebraic decay to zero with decreasing V,
a clear signature of criticality (Fig. 2). The critical voltage
Vc and the critical exponent � are determined by fitting
these data to the usual form ��	 
V2 � V2

c �
�. (Here, devi-

ations from criticality are measured in terms of V2 instead
of V by convention, since the dielectric torque that drives
the convection is proportional to V2 [11].) This yields the
following estimates:

 Vc � 34:856
4� V; � � 0:59
4�; (1)

where the numbers in parentheses indicate the uncertainty

in the last digits, which correspond here to a 95% con-
fidence interval in the sense of Student’s t. Our estimate
� � 0:59
4� is in good agreement with the 
2�
1�-dimensional DP value �DP � 0:583
3� [14].

We then measure N
l� and N
��, the distributions of the
sizes l and durations � of the inactive (DSM1) regions. For
instance, the distribution N
lx� in the x direction is ob-
tained by detecting all inactive segments in the x direction
for all y and t. We find that they decay algebraically at
criticality up to a finite-size exponential cutoff [Figs. 3(a)–
3(c)]. The power-law decay is fitted as N
l� 	 l��? and
N
�� 	 ���k with
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FIG. 2 (color online). Variation of the average DSM2 fraction
�� with V in the steady state. Inset: same data in logarithmic
scales, with vertical error bars indicating the standard deviation
of the time series �
t�. Fluctuations of V are negligible except for
the first data point, where the standard deviation is shown by a
horizontal error bar. Solid lines are fitting curves.

FIG. 1 (color online). Spatiotemporal intermittency between DSM1 and DSM2. (a) Sketch of a DSM2 with its many entangled
disclinations, i.e., loops of singularities in orientations of liquid crystals. (b) Snapshot taken at 35.153 V. Active (DSM2) regions appear
darker than the absorbing DSM1 background. See also Movie S1 [8]. (c) Binarized image of (b). See also Movie S2 [8]. (d) Sketch of
the dynamics: DSM2 domains (gray) stochastically contaminate [c] neighboring DSM1 regions (white) and/or relax [r] into the DSM1
state, but do not nucleate spontaneously within DSM1 regions (DSM1 is absorbing). (e) Spatiotemporal binarized diagrams showing
DSM2 regions for three voltages near the critical point, namely, 34.858, 34.876, and 34.900 V. The diagrams are shown in the range of
1206 �m� 899 �m (the whole observation area) in space and 6.6 s in time.
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 �x � 1:10
22�; �y � 1:23
4�; �k � 1:61
6�;

(2)

where �x and �y indicate the exponent �? measured in
the x and y direction, respectively. They are again in good
agreement with the DP values �DP

? � 1:204
2� and �DP
k
�

1:5495
10� [14]. These exponents are related to the more
conventional correlation length and time exponents �? and
�k via �? � 2� �=�? and �k � 2� �=�k, which lead
us to estimate

 �x � 0:66
17�; �y � 0:77
7�; �k � 1:51
25�:

(3)

They should be compared to the DP values �DP
? � 0:733
3�

and �DP
k
� 1:295
6� [14]. The above estimates for �? are

in reasonably good agreement with the DP value, while the
agreement on �k is less satisfactory. Our second set of
experiments provides another, independent estimate of �k.

Setting the voltage to 60 V, i.e., much higher than Vc, we
wait until the system is totally invaded by DSM2 domains.
We then suddenly decrease V to a value in the range of
34:86 V � V � 35:16 V, i.e., near Vc, and observe the
time decay of activity for 900 s. We repeat this 10 times
for each V value and average the results over this en-
semble. In such ‘‘critical-quench experiments,’’ correlation
lengths and times grow in time, and, as long as they remain
much smaller than the system size, the scaling estimates
are free from finite-size effects. As expected, �
t� decays
exponentially with a certain correlation time for V �
35:02 V, algebraically over the whole observation time
for V � 35:04 V, and converges to a finite value for V �
35:06 V [Fig. 4(a)]. A simple scaling ansatz implies the
following functional form for �
t� in this case:

 �
t� 	 t��f
"t1=�k �; � � �=�k; (4)

where " � 
V2 � V2
c �=V

2
c is the deviation from criticality

and f
�� is a universal scaling function. From the slopes of
the algebraic regimes for the three V values closest to the
threshold, we estimate

 Vc � 35:04
2�V; � � 0:50�
8�
�
5�: (5)

Note that Vc is slightly higher than in the steady-state ex-
periments. In fact, the roll convection onset V� � 8:96 V is
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FIG. 4 (color online). Critical-quench experiments. (a) Decay
of �
t� after the quench, for V � 34:86 V, 34:88 V; . . . ; 35:16 V
from the bottom left to the top right. The data for V � 35:04 V
(showing the longest scaling) are indicated by a thicker line.
(b) Scaling plot of data in (a), with Vc, �, and �k values
estimated from the experiment [Eqs. (5) and (6)]. The dashed
curve indicates the DP universal scaling function f
�� obtained
numerically from the process sketched in Fig. 1(d) (so-called
contact process). A collapse of similar quality is obtained when
using DP-class exponent values.
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FIG. 3 (color online). Histograms of inactive (DSM1) lengths lx, ly and duration � in the steady state near criticality. Regions
discarded in the fitting are painted light in color. Dashed lines indicate the estimated algebraic decay at threshold.
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also higher. We believe this is because, during the few days
which separated the two sets of experiments, our sample
has aged, a well-known property of MBBA. On the other
hand, no measurable shift was detected during a given set
of experiments. Our � value is again in good agreement
with the DP value �DP � 0:4505
10� [14]. Finally, our
direct estimates of � and � in Eqs. (1) and (5) and the
scaling relation (4) yield

 �k � 1:18�
14�
�
21�; (6)

which is in good agreement with the DP value �DP
k
�

1:295
6� [14]. Note that our two estimates of �k lie on
opposite sides of the DP value, with their confidence
intervals overlapping this reference number. Furthermore,
Eq. (4) implies that the time series �
t� for different
voltages collapse on the universal function f
�� when
�
t�t� is plotted as a function of tj"j�k . Our data do
collapse reasonably well on the universal function of DP
[Fig. 4(b)].

Continuous absorbing phase transitions are charac-
terized by three independent (static) exponents [1]. So
far, we have found those three independent algebraic scal-
ing laws (typically over two decades). The critical expo-
nent values all agree within a few percent with those of the
DP class in 2� 1 dimensions. In addition, data collapse is
satisfactorily achieved onto the universal scaling. This
constitutes the first complete and unambiguous experimen-
tal realization of a DP-class absorbing phase transition
[15]. Looking back at previous attempts to exhibit a DP
phase transition experimentally, one may wonder why we
obtained such clear DP scaling laws compared with earlier
experiments (see Table S1 [8]). A major reason, already
mentioned, is that EHD convection offers effective sizes
orders of magnitude larger than in previously studied sys-
tems such as Rayleigh-Bénard convection. Similarly, typi-
cal time scales are much shorter. But beyond those obvious
facts, we believe that our unusual choice of a transition
between two fluctuating states has also helped: in many
past experiments, the absorbing state was essentially
fluctuation-free (laminar) [7] and thus may have caused
long-range effects (mean flows and rigidity of the laminar
pattern), which probably further reduced the effective size
of the systems and could even break DP universality [1]. In
our system, such long-range interactions are likely to be
killed by local turbulent fluctuations of the absorbing
state. In short, our experimental setup easily reveals DP
scaling because it is able to tame both quenched disorder
(being macroscopic) and long-range interactions (being
turbulent).
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[3] R. Dickman, M. A. Muñoz, A. Vespignani, and S. Zapperi,

Braz. J. Phys. 30, 27 (2000).
[4] F. Ginelli et al., Phys. Rev. E 68, 065102(R) (2003).
[5] H. K. Janssen, Z. Phys. B 42, 151 (1981).
[6] P. Grassberger, Z. Phys. B 47, 365 (1982).
[7] S. Ciliberto and P. Bigazzi, Phys. Rev. Lett. 60, 286

(1988); F. Daviaud, M. Bonetti, and M. Dubois, Phys.
Rev. A 42, 3388 (1990); S. V. Buldyrev et al., Phys. Rev. A
45, R8313 (1992); S. Michalland, M. Rabaud, and Y.
Couder, Europhys. Lett. 22, 17 (1993); H. Willaime, O.
Cardoso, and P. Tabeling, Phys. Rev. E 48, 288 (1993);
M. M. Degen, I. Mutabazi, and C. D. Andereck, Phys. Rev.
E 53, 3495 (1996); P. W. Colovas and C. D. Andereck,
Phys. Rev. E 55, 2736 (1997); H. Téphany, J. Nahmias,
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see M. A. Muñoz, R. Dickman, A. Vespignani, and
S. Zapperi, Phys. Rev. E 59, 6175 (1999).

[15] Kai et al. reported hysteresis of the DSM1-DSM2
transition showing algebraic dependence on the ramp
rate of V [12]. This may seem in contradiction with the
DP framework, but this scaling of hysteresis loops turns
out to be one aspect of DP criticality under the presence of
a tiny residual probability for spontaneous nucleation of
DSM2 patches. This is detailed in K. A. Takeuchi,
arXiv:0706.4152.

PRL 99, 234503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 DECEMBER 2007

234503-4


