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We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-
body short-range potential having no bound state but an infinite scattering length. By accurately solving
the Schrödinger equation for up to N � 6 fermions, we show that no many-body bound states exist other
than those bound by the trapping potential, and we demonstrate unique universal properties of the system:
Certain excitation frequencies are separated by 2@!, the wave functions agree with analytical predictions
and a virial theorem is fulfilled. Further calculations up to N � 30 determine the excitation gap, an
experimentally accessible universal quantity, and it agrees with recent predictions based on a density
functional approach.
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Ultracold Fermi gases are pure and controllable systems
where few- and many-body properties can be studied.
Experiments now routinely convert a weakly interacting
atomic Fermi gas into a molecular Bose-Einstein conden-
sate (BEC) by tuning the scattering length near a Fano-
Feshbach resonance. While the limiting behaviors of this
BCS-BEC crossover are well understood, the strongly
interacting regime remains fundamental and challenging.
In particular, the unitary regime, characterized by a diverg-
ing two-body s-wave scattering length as, has been the
subject of much experimental and theoretical research in
the cold-atom community (see Ref. [1] for a review and an
exhaustive list of references). Of course, two-component
Fermi gases at unitarity also greatly interest the nuclear
physics community. Cold atomic Fermi gases and neutron
matter with large as are two physical realizations of the
idealized system described in the ‘‘Bertsch problem’’ [2].
Despite its importance, few essentially exact calculations
exist for its energy eigenstates, in part because the system
is strongly correlated and has no small parameter for
controlled perturbative treatments.

Here, we solve the many-body Schrödinger equation for
the trapped unitary Fermi gas with an even or odd number
of fermions by two different numerical techniques: a basis
set expansion technique that uses correlated Gaussians
(CG) and a fixed-node diffusion Monte Carlo (FN-DMC)
method. Our energies provide much needed benchmarks
for few-body systems with short-range interactions that are
important for the atomic, nuclear, and condensed matter
physics communities. A key result of our study is a dem-
onstration that this system exhibits unique universal prop-
erties resembling those of the noninteracting system.

For the class of two-body potentials that support no
s-wave bound state, we find that many-body bound states
do not exist for systems with N � 6 fermions. Our calcu-
lated excited-state spectrum for N � 6 explicitly confirms,
to within our numerical accuracy, the assertion by Werner
and Castin [3] that the excitation spectrum consists of

families of breathing-mode states separated by 2@!.
These excitations are nontrivial in the sense that they are
not associated with center-of-mass (c.m.) excitations. We
interpret this spacing using hyperspherical coordinates and
show that in addition to these families of breathing-mode
excited states, other excitation frequencies exist that equal
noninteger multiples of the trapping frequency. Moreover,
the wave functions agree with analytically determined
solutions [3], whose functional form was derived on the
basis of a universality assumption. Finally, we show that a
virial theorem is fulfilled [3,4]. This, together with our
finding that negative energy states do not exist, shows
explicitly that the entire spectrum of systems with N � 6
is universal; previously this had been shown explicitly only
for the three-body system [5,6], but its likely validity had
also been speculated for larger N (see, e.g., Ref. [3], and
references therein). A final key point of the present study is
a calculation of the excitation gap, for N � 29. Encour-
aging agreement is found with results obtained within a
density functional theory (DFT) framework [7], and it also
sheds light on the applicability of the local density ap-
proximation (LDA).

Our starting point is the Hamiltonian H for N mass-m
fermions under spherical external confinement with an-
gular trapping frequency !, H � T � Vtr � Vint, where
T � �@2=�2m�

PN
i�1r

2
i , Vtr �

PN
i�1 m!

2 ~r2
i =2, and Vint �PN1

j�1

PN2
k�1 V0�rjk�. Here N1 and N2 denote, respectively,

the number of spin-up and spin-down fermions (N � N1 �
N2), and ~ri denotes the position vector of the ith atom. The
purely attractive short-range potentials V0 (identical to
those of Ref. [8]) depend on the interparticle distance rjk
and are parametrized by two parameters, the depth d and
the range R0, where R0 � aho and aho �

�����������������
@=�m!�

p
. For a

given R0, d is adjusted so that the first free-space two-body
s-wave bound state is just about to exist (i.e., so that jasj �
1). To study even-odd oscillations, we set N1 � N2 for
even N, and N1 � N2 � 1 for odd N. Two numerical
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methods are applied to solve the Schrödinger equation for
H: the CG and the FN-DMC approach.

The CG approach has previously been used to determine
the energy spectrum of the four-fermion system with short-
range interactions [8,9]. Here we extend these studies up to
N � 6 and additionally present structural properties. In our
implementation, each basis function is written as a product
of the c.m. ground state and a symmetrized product of
Gaussian functions each of which depends on one of the
N�N � 1�=2 interparticle distances. The resulting states
have vanishing relative orbital angular momentum Lrel.
To describe the N-atom states with arbitrary Lrel in our
CG approach, we add an extra noninteracting particle. The
Hamiltonian matrix is evaluated analytically. A stochastic
variational approach [10] optimizes the basis set and
convergence.

Table I summarizes a few selected total energies E�n for
N � 3–6 (throughout this work, c.m. excitations are not
considered, i.e., Ec:m: �

3
2 @!). For N � 3 and 4, calcula-

tions for different R0 indicate that the finite range effect of
the reported energies is � 0:02@! [8,9]. For N � 5 and 6,
finite range effects are expected to be �0:1@!. Assign-
ment of the quantum numbers � and n is discussed below.
Our N � 3 energies agree with those reported in Ref. [5]
and the corresponding s� coefficients (defined below)
agree with those reported in Ref. [11]. For N � 5 and 6,
our energies are the first ab initio results obtained for this
Hamiltonian by a method that is at least, in principle, free
of any assumptions. We find that the systems with N � 5
(Lrel � 0 and 1) and N � 6 (Lrel � 0) support no negative
energy states.

To treat up to N � 30 fermions, the Schrödinger equa-
tion is solved by the FN-DMC method [12,13]. The proper
fermionic antisymmetry is imposed through the use of a
guiding function  T . To within statistical uncertainties, the
FN-DMC algorithm provides an upper bound to the exact
energy, i.e., to the lowest-lying state with the same sym-
metry as  T . Following Ref. [8], we consider two different
functional forms for  T: The nodal surface of  T1 is
constructed by antisymmetrizing a product of pair func-
tions [14], and that of  T2 coincides with the nodal surface
of the noninteracting Fermi gas. OddN systems are studied
using generalizations of the  T defined in Ref. [8] for even
N: We find that  T2 gives the lowest energy up to N & 9

and  T1 for larger N. Unlike the energy, the unbiased
calculation by the FN-DMC approach of observables asso-
ciated with operators that do not commute with the
Hamiltonian is more involved. Here, we use the mixed
estimator hAimixed, hAimixed � 2hAiDMC � hAiVMC [13]. To
improve T , we introduce additional two-body correlations
[15,16].

Table II summarizes the ground state energies E00 ob-
tained by the FN-DMC approach for N � 30 (the energies
for even N, N � 20, were already presented in Ref. [8]).
For N � 22, our energies provide more stringent bounds
with smaller error bars than those reported previously [17].
For N � 23–30, these are the first ab initio results avail-
able. Comparison with Table I shows that the FN-DMC
energies for N � 6 agree with the CG energies to within
2%. This agreement validates our construction of the nodal
surface of  T for N � 6.

Dilute gases with short-range interactions exhibit unique
universal properties at unitarity, such as the predicted
behavior that the energy spectrum contains sequences of
excited universal breathing-mode states separated by 2@!
[3,18]. This unique feature, specific to the unitary gas, can
be intuitively understood by realizing that the only length
scale of the problem is given in this limit by the size of the
system, i.e., the hyperradius R. Here, R is defined by
removing the c.m. vector ~Rc:m: and dividing the remaining
3N � 3 coordinates into the hyperradius R and 3N � 4
hyperangles �: mR2�

P
imr

2
i �MR

2
c:m:, where M � Nm.

A dimensionality argument then suggests that the func-
tional form of the universal hyperradial potentials Vs��R�
should be the same as that of the noninteracting system,
which immediately implies the 2@! energy spacing for any
excitation operator that depends on only R.

This argument has been formalized by Werner and
Castin for the N particle unitary gas interacting through
zero-range pseudopotentials under harmonic confinement
[3]: It has been predicted that the adiabatic approximation

TABLE I. CG energies E�n for a Gaussian potential; R0 �
0:01aho for N � 3 and 4, and 0:05aho for N � 5 and 6.

N Lrel E00=�@!� E01=�@!� E02=�@!� E10=�@!� E20=�@!�

3 0 4.682 6.685 8.688 7.637 9.628
3 1 4.275 6.276 8.279 6.868 8.229
4 0 5.028 7.032 9.039 7.464 8.051
5 0 8.03 10.04 12.06 8.83 10.38
5 1 7.53 9.13
6 0 8.48 10.50 12.52 10.44 11.00

TABLE II. FN-DMC energies E00 and expectation values
2hVtri, both in units of @!. The range R0 of the square-well
potential is 0:01aho for N � 20, and a bit smaller for larger N.
Statistical uncertainties of E00 are reported in parentheses and of
2hVtri are a few times larger than those of E00.

N E00 2hVtri N E00 2hVtri N E00

3 4.281(4) 4.255 13 24.79(9) 24.99 23 51.01(18)
4 5.051(9) 5.028 14 25.92(5) 26.21 24 52.62(20)
5 7.61(1) 7.48 15 29.59(10) 29.86 25 56.85(22)
6 8.64(3) 8.86 16 30.88(6) 31.11 26 58.55(18)
7 11.36(2) 11.20 17 34.64(12) 34.93 27 63.24(22)
8 12.58(3) 12.55 18 35.96(7) 36.39 28 64.39(31)
9 15.69(1) 15.55 19 39.83(15) 40.89 29 69.13(31)

10 16.80(4) 16.82 20 41.30(8) 41.84 30 70.93(30)
11 20.11(7) 19.81 21 45.47(15)
12 21.28(5) 21.39 22 46.89(9)
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is exact for universal states. For these states, the wave
function thus separates into a product of an, in general,
unknown R-independent channel function ����� and a
�-independent radial function F�n�R�, �rel

�n�R;�� �
R�4�3N�=2F�n�R������. For a given hyperangular quantum
number � (� � 0; 1; . . . ), the radial quantum number n
takes the values n � 0; 1; . . . . The description of the
strongly interacting many-body system thus reduces to
solving a one-dimensional Schrödinger equation for the
hyperradial potential Vs��R�, which includes part of the
kinetic energy and a contribution due to the two-body
interactions,

 

�
�@2

2m
d2

dR2 �
m!2R2

2
� Vs��R�

�
F�n � Erel

�nF�n: (1)

Here, Vs��R� � @
2s��s� � 1�=�2mR2�. The energies Erel

�n

are related to the total energies E�n through E�n � Erel
�n �

Ec:m:. The coefficients s� are constants that arise from the
integration over the hyperangular Schrödinger equation;
their values are, in general, unknown. Owing to the simple
functional dependence of Eq. (1) on R, the Erel

�n and F�n can
be written down readily [3], Erel

�n � �s� � 2n� 3=2�@!
and F�n�R� � Rs��1L�s��1=2�

n �R2=a2
ho� exp��R2=2a2

ho�
(not normalized), where n denotes a non-negative integer,
and L�s��1=2�

n is the Laguerre polynomial. The expression
for the Erel

�n reveals immediately that the spacing between
energy levels within a given hyperradial potential curve
Vs��R� is independent of s� and equals 2@!.

Using the expression forErel
�n, the E00 reported in Tables I

and II readily give s0 for N � 30. For N ! 1, the ground
state energy of the trapped and homogenous systems can
be connected via the LDA (see, e.g., Ref. [19]), leading to
s0 �

����������
�hom

p
ENI=@!. Here, ENI denotes the energy of the

noninteracting (NI) trapped system and �hom denotes a
universal parameter of the bulk system, �hom � 0:42
[14,16,20,21], which leads to s0 � 0:65ENI=@!. For the
trapped system, we obtained �tr � 0:465 [8] and s0 �
0:68ENI=@!. The functional form of Vs� can also be ob-
tained using a renormalization technique as N ! 1 [22],
which leads to s0 � 0:71ENI=@! in fairly close agreement
with the above values.

To date, the 2@! spacing of the unitary gas has been
verified explicitly only for N � 3 [5]. The spacing of the
energies E�n reported in Table I for N � 3–6 for the first
few states with � � 0 agrees with the predicted 2@! spac-
ing to better than 2%, i.e., within our numerical uncer-
tainty. We additionally verified for N � 4 that this spacing
holds for the lowest states with � � 1 and 2.

Dash-dotted lines in Figs. 1(a) and 1(b) show the poten-
tial curves V�R�, V�R� � Vs��R� �m!

2R2=2, for N � 4
for � � 0 and � � 1, respectively, calculated using the s�
coefficients obtained from the CG energies. Dash-dotted
lines in Fig. 1(c) show V�R� for � � 0 for N � 9, 12, and
17 (from bottom to top) calculated using the s0 coefficients

obtained from the FN-DMC energies. Circles and solid
lines show the corresponding square of the radial functions
F2
�n obtained numerically (by integrating �2

�n over all
coordinates but the hyperradius R) and analytically (using
the s� coefficients calculated from the CG and FN-DMC
energies), respectively. Clearly, our numerically deter-
mined F2

�n agree well with those determined analytically,
providing the first quantitative numerical verification of the
interpretation of the 2@! spacing within the hyperspherical
framework for N > 3.

Another property of the unitary Fermi gas is that all of its
universal states follow a virial theorem, i.e., E�n �
2hVtri�2

�n
[3,4]. Table II shows that the energy expectation

value (columns 2 and 5) and the energy obtained using the
virial theorem (columns 3 and 6) for N � 20 agree well,
providing further evidence for the separability of universal
states of the unitary gas and, on the other hand, suggesting
that our parametrization of the nodal surface used in the
FN-DMC calculations is adequate. The virial theorem has
previously been tested at various levels of approximation
[7,17,23].

We now use the ground state energies reported in
Table II to determine the experimentally measurable exci-

FIG. 1 (color online). Dash-dotted lines show V�R� as a func-
tion of R=aho for (a) N � 4 with � � 0, (b) N � 4 with � � 1,
and (c) N � 9, 12, and 17 (from bottom to top) with � � 0.
Circles and solid lines show the corresponding F2

�n determined
numerically and analytically, respectively. Dashed horizontal
lines show the energies Erel

�n.

FIG. 2 (color online). Circles show the excitation gap ��N�
determined from our FN-DMC energies. A solid line shows
�LDA�N� using �tr and �tr. For comparison, triangles show
��N� determined from the DFT energies [7].
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tation gap ��N� for the trapped unitary Fermi gas as a
function of N. The definition of the excitation gap for the
homogeneous system [20], which equals half the energy it
takes to break a pair, can be readily extended to the trapped
system [7,17], ��N� � E00�N� � 	E00�N � 1� � E00�N �
1�
=2. Circles in Fig. 2 show the excitation gap ��N�
obtained from our FN-DMC energies. ��N� increases
from �0:75@! for N � 3 to �1:5@! for N � 29. For
comparison, triangles show ��N� calculated using the
DFT energies obtained recently by Bulgac [7]. The agree-
ment between ours and Bulgac’s ��N� is quite good.

To gain further insight, we calculate the gap in the LDA,
�LDA�N� � 3�hom�3N�

1=3
@!=�8

����������
�hom

p
�. The universal pa-

rameter � describes the even-odd oscillations: �hom equals
0.85 for the bulk system [21], and we find �tr � 0:60 for
the trapped system. �LDA�N�, shown in Fig. 2 by a solid
line using �tr and �tr, provides a good description of our
FN-DMC results. The fact that �tr is noticeably smaller
than �hom suggests that the extra particle is not distributed
uniformly throughout the cloud. Indeed, our density pro-
files for N * 11 (not shown) indicate that the extra particle
sits near the surface of the cloud. In the LDA, the center
should be described well but not the surface, so LDA might
fail here. Recently, Son proposed that the gap increases
with N1=9 as N ! 1 [24]. A fit of our results for ��N� for
N � 9 shows consistency with the N1=9 dependence but
does not conclusively confirm it.

In summary, we have shown that trapped two-
component unitary Fermi gases with N � 6 support no
negative energy states. While our FN-DMC calculations
do not exclude the presence of negative energy states for
larger N, we find no evidence for their existence. A varia-
tional analysis predicts an upper bound for the system size
Ncr at which nonuniversal states exist of �40. To obtain
Ncr we consider the Gaussian two-body potential and take
the variational many-body wave function of the untrapped
system to coincide with that of a trapped noninteracting
two-component Fermi gas. The confinement width is
treated as a variational parameter, and N is increased till
a negative energy state is found. The absence of negative
energy states for N � 6 fermions explains the stability of
equal-mass two-component Fermi gases. Furthermore, we
explicitly verify a number of unique properties of the
universal states of the unitary Fermi gas. The particular
form of the energy spectrum has consequences: It should
be possible to verify experimentally that for each excitation
frequency !ex there exists a ladder of non c.m. excitations
!ex � 2n! (n integer). Furthermore, the s� coefficients
calculated here for the trapped system remain valid for the
free-space system [3]. Finally, we calculate the excitation
gap ��N� for N � 29 and find good agreement with recent

DFT results. ��N� increases with N and the excess atom
leads forN * 11 to an increase of the density in the surface
region.
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