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A Fermi-Bose mapping method is used to determine the exact ground states of several models of
mixtures of strongly interacting ultracold gases in tight waveguides, which are generalizations of the
Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas
(1D spin-aligned Fermi gas with infinitely strong zero-range attractions). We detail the case of a Bose-
Fermi mixture with TG boson-boson (BB) and boson-fermion (BF) interactions. Exact results are given
for density profiles in a harmonic trap, single-particle density matrices, momentum distibutions, and
density-density correlations. Since the ground state is highly degenerate, we analyze the splitting of the
ground manifold for large but finite BB and BF repulsions.
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Because of the rapidly increasing sophistication of ex-
perimental techniques for probing ultracold gases, theo-
retical emphasis has shifted from effective field approaches
to more refined methods capable of dealing with correla-
tions, and experiments measuring such correlations have
been carried out. In ultracold gases confined in de Broglie
waveguides with transverse trapping so tight that the
atomic dynamics is essentially one-dimensional [1], with
confinement-induced resonances [1,2] allowing Feshbach
resonance tuning [3] of the effective 1D interactions to
very large values, such correlations are greatly enhanced.
This has allowed experimental verification [4,5] of the
fermionization of bosonic ultracold vapors in such geome-
tries predicted by the Fermi-Bose (FB) mapping method,
which was introduced in 1960 [6] and used to obtain the
exact N-particle ground and excited states of a 1D gas of
impenetrable point bosons, the Tonks-Girardeau (TG) gas.
Apart from recent work of Imambekov and Demler [7],
theoretical work on 1D mixtures has used approximations
which are not valid in the highly-correlated regime. Exact
results in [7], based on the Bethe ansatz method of Lieb
and Liniger (LL) [8], are limited to the spatially uniform
case (no longitudinal trap potential). We present here exact
solutions for several models of mixtures of strongly corre-
lated 1D systems including that of [7], for both untrapped
and harmonically trapped mixtures.

Bose-Fermi mixture.—We consider a 1D mixture of NB
bosons with point hard-core boson-boson interactions and
of NF noninteracting fermions with point hard-core boson-
fermion interactions, and we assume equal masses mB �
mF � m. This model could be realized by choosing a
bosonic and fermionic isotope of a given alkali element
(e.g. 6Li-7Li). We indicate the boson and fermion coordi-
nates by XB � �x1B; . . . ; xNBB�, XF � �x1F; . . . ; xNFF�. Our
treatment includes the case where the mixture is subjected
to an external potential (e.g., a harmonic trap v�x� �
1
2m!

2x2), provided that the potentials acting on the bosons
and on the fermions are the same, i.e., vB�xjB� � v�xjB�

and vF�x‘F� � v�x‘F�. The Schrödinger Hamiltonian is
Ĥ � ĤB � ĤF � ĤBB � ĤBF with
 

ĤB �
XNB
j�1

���@2=2m�@2=@x2
jB � v�xjB��;

ĤF �
XNF
‘�1

���@2=2m�@2=@x2
‘F � v�x‘F��:

(1)

The impenetrable point BB and BF interactions can be
formally represented as sums of LL delta function inter-
actions [8] gBB��xjB � x‘B� and gBF��xjB � x‘F� with
coupling constants gBB ! �1 and gBF ! �1, but they
are more conveniently represented by constraints that the
many-body wave function ��XB; XF� vanishes at all BB
and BF collision points, after which ĤBB and ĤBF can be
omitted from the Hamiltonian.

The exact solution can be obtained as follows. Construct
a ‘‘model wave function’’ �M�XB; XF� which is a Slater
determinant of N � NB � NF orthonormal orbitals
u1�x�; . . . ; uN�x� occupied by all N bosons and fermions,
with all possible permutations of the atoms among the
orbitals: �M �

P
P"�P�u1�Px1� � � � uN�PxN�. Here

x1; . . . ; xN are x1B; . . . ; xNBB, x1F; . . . ; xNFF, the sum runs
over all N! possible permutations of these variables includ-
ing permutations exchanging bosons with fermions, and
"�P� is the usual 	1 sign of the permutation. This wave
function vanishes not only at the points xjF � x‘F required
by fermionic antisymmetry, but also at the points xjB �
x‘B and xjB � x‘F required by the BB and BF hard-core
constraints. Its improper symmetry under BB and BF
exchange is repaired by a modified FB mapping. Define
a mapping function A�XB; XF� by

 A �
Y

1
j<‘
NB

sgn�xjB � x‘B�
YNB
j�1

YNF
‘�1

sgn�xjB � x‘F�; (2)

where the sign function sgn�x� is �1��1� if x > 0�x < 0�.

PRL 99, 230402 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 DECEMBER 2007

0031-9007=07=99(23)=230402(4) 230402-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.230402


Then the physical wave function is ��XB; XF� �
A�XB; XF��M�XB; XF�. �M is an exact many-body energy
eigenstate if the orbitals u� are eigenfuctions of the single-
particle Schrödinger Hamiltonian ��@2=2m�@2=@x2 �
v�x� with eigenvalues ��. Since A is constant except for
jumps at nodes of �M, it follows that the physical state �
is an energy eigenstate with eigenvalue

P
��� and is sym-

metric under permutations of bosons and antisymmetric
under permutation of fermions. The ground state is a filled
Fermi sea of the lowest N orbitals and excited states are
generated by choosing higher orbitals. An important case
for experiments is that of harmonic trapping, v�x� �
1
2m!

2x2. Then the ground state is a straightforward gen-
eralization of that of the trapped TG gas [9]. The orbitals
are Hermite-Gaussians �n�x� � ��1=4�2nn!xosc�

�1=2 �

e�Q
2=2Hn�Q� with n � 0; 1; . . . ; N, where Q � x=xosc

and xosc �
�������������
@=m!

p
. �0M can be reduced to Bijl-Jastrow

form by determinantal algebra as in the original solution
[6] for the untrapped TG gas and the recent one [9] for the
trapped TG gas, yielding �0M / �

Q
1
j<‘<N�xj � x‘���QN

j�1 �0�xj�, where x1 � x1B; . . . ; xNB � xNBB, xNB�1 �

x1F; . . . ; xN � xNFF. By applying the mapping function A
to �0M one finds for the ground state

 

�0 �

� Y
1
j<‘
NB

jxjB � x‘Bj
��YNB

j�1

YNF
‘�1

jxjB � x‘Fj
�

�

� Y
1
j<‘
NF

�xjF � x‘F�
�

��0�x1B� � � ��0�xNBB��0�x1F� � � ��0�xNFF�: (3)

apart from normalization. The solution for the homogene-
ous system of size L with periodic boundary conditions
differs only by omission of the Gaussian factors �0 and by
replacement of each coordinate difference x� x0 by
sin���x� x0�=L� [6]. The bosonic and fermionic re-
duced one-body density matrices are defined as
�1B�x;x0��NB

R
�0�x;X0B;XF��

�
0�x
0;X0B;XF�dX

0
BdXF and

�1F�x; x0� � NF
R

�0�XB; X0F; x��
�
0�XB; X

0
F; x

0�dXBdX0F,
where X0B � �x2B; . . . ; xNBB� and X0F � �x1F; . . . ; xNF�1;F�,
and NB, NF are normalization constants fixed by the
conditions

R
�1B�x; x�dx � NB and

R
�1F�x; x�dx � NF.

Density profiles.—The bosonic and fermionic single-
particle densities �B�x�  �1B�x; x� and �F�x� 
�1F�x; x� are the same as those of �0M, since they depend
only on j�0j

2, and A2 � 1. Since �0M is completely
antisymmetric under permutations of all N particles, �B
and �F are both proportional to the density �TG of a
harmonically trapped TG gas of N bosons: �B�x� �
�NB=N��TG�x� and �F�x� � �NF=N��TG�x� where [9]
�TG�x� �

PN�1
n�0 j�n�x�j2. These exact results contrast

strongly with local density approximation results in the
TG limit [7], which show BF phase separation with �B
more concentrated in the center, although their total den-

sity �B�x� � �F�x� agrees closely with ours. Note that the
exact ground state is highly degenerate in the TG limit [10]
due to the fact that there is no required symmetry under BF
exchange. Our choice (3) is the most symmetrical, has
hard-core cusps at all BB and BF collisions and antisym-
metry nodes at all FF collisions, and it will be shown below
that if the degeneracy is lifted by making the BB and BF
interactions finite, then (3) corresponds to the lowest mem-
ber of the split ground manifold, and hence our �B�x� and
�F�x� are the TG limit of the true ground state partial
densities for large but finite repulsions. Nevertheless, in
the TG limit the density profiles are labile, since linear
combinations of the degenerate ground basis [10] have
different density profiles.

Density-density correlations and collective excitation
spectrum.—The BB, FF, and BF density-density correla-
tion functions for this model depend only on �0M, and
hence are all the same as that of an ideal Fermi gas or TG
gas of N particles apart from normalization; see Eqs. (10)
and (11) of [9]. This implies, e.g, that no composite fer-
mions are found (as is the case for a BF mixture on a lattice
for particular values of gBF and gBB [11]). The spectrum of
collective excitations is given by the poles of the dynamic
structure factor, and hence coincides with that of an ideal
Fermi gas. For the case of harmonic trapping the spectrum
is given by integer multiples of the trapping frequency !
for both in-phase and out-of-phase modes, in disagreement
with [7].

Momentum distributions.—Momentum distributions,
Fourier transforms of the reduced one-body density matri-
ces with respect to x� x0, differ greatly between bosons
and fermions. Consider first the bosonic one-particle den-
sity matrix �1B�x; x

0� and momentum distribution nB�k�.
Using (3) one finds that �1B is proportional to the one-body
density matrix of a pure TG gas of N bosons, �1B�x; x0� �
�NB=N��1TG�x; x0�, and hence nB�k� � �NB=N�nTG�k�.
Although �1TG is not known analytically, the asymptotics
of nTG�k� are known for a homogeneous system of density
�TG, and are given by nTG�k� / jkj

�1=2 for k� �TG [12]
and by nTG�k� / jkj�4 for k� �TG [13]. Determina-
tion of �1F�x; x0� and nF�k� is much more difficult. We
detail here the derivation for the homogeneous system.
Comparing Eq. (3) with �0 of the pure TG gas [6] we
obtain �1F�x; x0� � NF

R
dx1 . . . dxN�1j�0M;N�1j

2�Q
1
j
NBsgn�xj � x�sgn�xj � x0�

Q
1
j
N�14 sin���xj �

x�=L� sin���xj � x0�=L� where �0M;N�1 is �0M for N �
1 particles. The determinantal expression �0M;N�1 �

det�eikjx‘�j;‘�1;...N�1, where kj � ��N � 2��=L;��N �
4��=L; . . . ; �N � 4��=L; �N � 2��=L and some algebra
reduce �1F to the sum of a product of one-dimensional
integrals, of which the first NB involve b�t; x; x0� �
j sin���t� x�=L�jj sin���t� x0�=L�j as in a TG gas, and
the remaining NF contain f�t; x; x0� � sin���t� x�=L��
sin���t� x0�=L� as in an ideal Fermi gas. Combining the
dissimilar factors by the ‘‘phase trick’’ of [7,14], one finds
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the final result

 �1F�x; x0� � �
Z d�

2�
e�iNB� det

j;k�1;...N�1
�uj;k�x; x0; ���; (4)

where � � �NF=NL�C�N B;N F �, and uj;k�x; x
0; �� �

4
L

R
L
0 dt�e

i�sgn�t � x�sgn�t � x0� � 1� sin���t � x�=L� �
sin���t � x0�=L�ei2�t�j�k�=L. This can be extended to a
harmonic trap.

Ground and excited states for large but finite BB and BF
repulsion.—Suppose now that the interactions are finite LL
interactions [8] gBB��xjB � x‘B� and gBF��xjB � x‘F�.
Define dimensionless coupling constants �BB �

gBB

2@

�������m
2@!

p
and �BF �

gBF

2@

�������m
2@!

p
. The TG limit, to which our ground

state (3) corresponds, is �BB ! �1 and �BF ! �1. As
previously noted this state is only one member of a degen-
erate ground manifold [10], and we now examine how this
degeneracy is split when �BB and �BF are large but finite.
The exact solutions of the two-body problem are known
[15] and the energy eigenfunctions ���xBF� of the relative
motion in a harmonic well are expressible in terms of
parabolic cylinder functions D��	� [16] where 	 �
xBF

������m!
@

p
. The corresponding relative energy eigenvalues

are E� � ���
1
2�@! where � is a solution of the transcen-

dental equation ��12 �1� ���=��� 1
2�� � ��BF, and re-

duce to the harmonic oscillator (HO) quantum numbers
n � 0, 1, 2, . . . in the noninteracting limit. Here we want
the opposite limit �BF � 1. In the TG limit all the eigen-
functions are �n�xBF� � A�xBF��nM�xBF�, where A is a
mapping function [10] and the model functions �nM are
the odd HO functions un with n � 1, 3, 5, . . . so as to
vanish at contact. There are two possible mapping func-
tions: A1 � sgn�xBF� and A2 � �1, and the ground state is
twofold degenerate, with even and odd eigenfunctions
��1 � sgn�xBF�u1�xBF� and ��1 � A2u1 � u1�xBF� and
energy E1 �

3
2 @!. For large but finite �BF the lowest

even eigenfunction is ��1 � D�1
�j	j� where �1 is the

solution of the above transcendental equation closest to
1. ��1 does not vanish at xBF � 0 and has an LL cusp [8]
there due physically to the delta function interaction and
mathematically to the absolute value in its argument [17].
Using gamma function identities and Taylor expansions

one finds �1 � 1�
��1

BF���
�
p �O���2

BF �. On the other hand, the

lowest odd eigenfunction ��1 is the lowest odd unper-
turbed HO eigenfunction u1, since u1��xBF� � 0. Hence
the symmetric solution ��1 is the ground state and ��1 �
u1 is the first excited state, with excitation energy �E �
@!

�BF

���
�
p �O���2

BF �. More generally, all of the eigenfunctions

in the order of increasing energy are D�1
�j	j�, u1, D�2

�j	j�,
u2, . . ., alternately even and odd with 0, 1, 2, . . . nodes. This
is in agreement with Sturm-Liouville theory and the theo-
rem that the ground state of a Boltzmann or Bose system is
real, nonnegative, and hence nodeless.

For arbitrary NB and NF and finite coupling constants
the exact solutions are known in the untrapped case only
for the special case �BB � �BF. However, the above theo-
rem on ground state symmetry has a generalization accord-
ing to which the ground state is nodeless except for Fermi
antisymmetry nodes. It follows that the ground state van-
ishes only at FF contact points xjB � x‘F, and at all BB and
BF collision points it has interaction cusps of LL form [8].
By comparison with Eq. (3), one concludes that (3) is the
TG limit of the finite-interaction ground state; all other
choices [10] of the TG mapping A correspond to excited
states. The manner in which the degeneracy of the TG
ground manifold splits when �BB and �BF are made large
but finite is related to symmetries of all the different
mappings [10] yielding the different ground states de-
generate in the TG-limit. Consider first a mapping A�0�

differing from (2) by omission of all of the factors
sgn�xjB � x‘F�. The corresponding mapped state is ��0�0 �

A�0��0M, where �0M is the previously defined fermionic
model ground state. A�0� restores the correct symmetry
under BB permutations and introduces the necessary inter-
action cusps at BB collision points [8], while leaving ��0�0

antisymmetric not only under FF permutations, but also
locally antisymmetric under BF exchanges, in the sense
that ��0�0 changes sign as xjB � x‘F passes through zero

[18]. It follows that ��0�0 is an eigenstate not only of the TG
Hamiltonian �BB ! 1 and �BF ! 1, but also of a
Hamiltonian with TG BB interactions (i.e., �BB ! 1)
but finite BF interactions, because the nodes at BF collision
points destroy the delta function interactions, and its en-
ergy is the same as that in the TG limit. It is not the ground
state because of the previously-stated theorem, and in fact
it is the top of a ladder of closely-spaced levels extending
upward from the ground state, with splittings of order @!


BF

between adjacent levels, obtained by restoring more and
more collision sgn factors in the mapping function and
hence collision cusps in the wave function, thus generating
additional downward shifts of order @!


BF
.

Other soluble models.—In addition to the previously
discussed Bose-Fermi mixture (which we denote as
model I) we can solve several other models with a similar
approach. Model II is a mixture of two noninteracting
Fermi gases with interspecies point hard-core repulsions,
and model III is a mixture of two Bose gases A and B with
inter- and intraspecies hard-core point interactions.
Model II could be realized, e.g., by choosing two hyperfine
levels of 40K or 6Li and by tuning to very large and
repulsive the interspecies interactions by a confinement-
induced Feshbach resonance and analogously model III
could be realized by choosing two hyperfine levels of a
bosonic alkali atom, e.g., Na or Rb. Models I–III all start
from the same model state �M, so we only state final
results, again for harmonic trapping. For both models II
and III the density profiles are proportional to those of a TG
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gas of N � NA � NB bosons, and in model III the momen-
tum distributions for both components are also propor-
tional to those of a N-particle TG gas, while for model II
the A-component momentum distribution nA�k� is equal to
nF�k� for model I with NA fermions and NB bosons, and
similarly for nB�k� with A and B interchanged. These
models have degenerate ground states by the same mecha-
nism as model I.

Finally, we can consider binary mixtures with large,
attractive, odd-wave interactions between the two species
due to a p-wave Feshbach resonance, in the so-called
fermionic Tonks-Girardeau (FTG) limit [2,19,20] wherein
the fermionic wave function is nonzero with sign change at
contact. Model IV is a mixture of two Bose gases A and B
with no AA or BB interactions but an AB interaction of
FTG form, model V is a mixture of ideal Bose gas B and
FTG gas F with FTG BF interactions, and model VI is a
mixture of two FTG gases A and B with FTG AB inter-
actions. These models all have the same model state �M, a
mixture of two dissimilar ideal Bose gases, while the
mapping function A has sgn factors for all collisions where
an FTG interaction is desired [2,19,20]. The momentum
distributions for the spatially uniform case on a ring have
Lorentzian form as for the FTG gas [21], with the range of
the density matrix of each component determined by the
sum of the densities of all components (either the same or
different) with which it interacts.

We have identified further models with attractive inter-
species FTG interactions solvable by mapping from ideal
gas mixtures to mixtures of an ideal Fermi gas or TG Bose
gas and an ideal Bose gas or FTG Fermi gas, or a mixture
of two dissimilar ideal Fermi gases or TG Bose gases, and
we believe that this covers all two-component mixture
models solvable by mapping functions everywhere 	1,
with jumps at contact points which convert Fermi antisym-
metry nodes to Bose hard-core cusps and Bose-Bose or
dissimilar species contact points to infinite FTG attraction
discontinuities.

Experimental realizability and applications.—Since the
TG regime in pure ultracold gases has been reached [4,5]
and p-wave resonances required for the FTG regime have
been observed [22], several of these strongly interacting
mixture models should be experimentally realizable. The
low-lying level structure we have found for Bose-Fermi
mixtures might be exploited for quantum computation.
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