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We study the effect of the crowded environments on the translocation of a polymer through a pore in a
membrane. By systematically treating the entropic penalty due to crowding, we show that the trans-
location dynamics are significantly altered, leading to novel scaling behaviors of the translocation time.
We also observe new and qualitatively different translocation regimes depending upon the extent of
crowding, transmembrane chemical potential asymmetry, and polymer length.
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Transport of a variety of biopolymers across a dividing
membrane is a fundamentally important process in bio-
logical systems [1]. Examples include transfer of proteins
across cellular membranes or endoplasmic reticulum [2],
gene swapping through bacterial pili [3], and RNA trans-
port through nuclear pore complexes [4]. Technological
applications include gene delivery [5] and DNA sequenc-
ing [6]. A considerable amount of theoretical work has
focused on both the basic physics [7–11] underlying the
translocation process and on how details such as polymer-
pore interactions [12], intrinsic polymer structure [13], and
confinement [14,15] affect the dynamics of the process. An
aspect that has received very little attention is the effect of
crowding on the translocation dynamics. For instance,
crowding due to macromolecular aggregates and other
inclusions in the cellular cytoplasm can be as high as
50% by volume [16] and is known to have considerable
influence on reaction rates, protein folding rates, and equi-
libria in vivo [17,18]. A polymer threading its way through
such a crowded environment is subject to a large entropic
penalty which should dramatically affect the translocation
dynamics. In this Letter, we present the first systematic
study of polymer translocation in the presence of crowd-
ing. The fact that this is a problem that combines aspects of
two important issues in polymer science, namely, polymer
dynamics in random environments and polymer transloca-
tion through a pore, is of significant theoretical and prac-
tical interest. We show that the presence of nonlinear terms
in the free energy penalty due to crowding leads to quali-
tatively different translocation dynamics including novel
power law scalings of the translocation time with polymer
length as well as situations where the translocation time is
nearly independent of the polymer length over several
orders of magnitude.

We consider a Gaussian polymer of length N (in units of
the Kuhn length b) threading through a pore in a membrane
from cis side to trans side, as illustrated in Fig. 1. The pore
is assumed to be small enough that it allows only one
monomer to pass through at a time, with an effective
diffusion constant DP. Crowding is modeled by randomly

distributed spherical obstacles, sterically interacting with
the polymer, of radius a and diffusion constant Do at a
volume fraction �c��t� on the cis (trans) side. There could
also be an excess chemical potential difference for mono-
mers between cis and trans side, ��. We now assume that
we can treat the process quasistatically with the polymer
segments on both sides being in equilibrium at all times.
The validity of the assumption depends on the relative
magnitudes of the three time scales in the problem: the
total translocation time �� �b2=DP�~�, the polymer relaxa-
tion time �R � ��b3=kBT�N

2 [19], and the time scale set
by obstacle motion �o ���2=3=Do. Here, ~� is a dimen-
sionless function that characterizes the translocation pro-
cess and � is the medium’s viscosity. Assuming
equilibrium statistics for the polymer segments necessarily
requires that �R � � [7]. In the presence of obstacles, this
assumption remains valid in two different regimes, �o �
�R � � and �R � �� �o. The first regime corresponds
to the situation where the obstacles diffuse fast enough that
the ‘‘polymer� obstacles’’ system can be assumed to be at
equilibrium (dynamic obstacles). In the second regime, the
obstacles are essentially immobile over �, and the polymer
segment achieves equilibrium statistics in this static ob-
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FIG. 1 (color online). Schematic illustration of the transloca-
tion process of a polymer in the presence of crowding.
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stacle environment. It should be noted that if the pore
friction is not high enough (i.e., �R ’ �) [9] or if �R �
�o � �, the quasistatic assumption breaks down leading to
anomalous dynamics. In the regimes where the assumption
remains valid, we have a well-defined free energy barrier
whose form is governed by the polymer statistics, presence
of the membrane, chemical potential gradient, and the
presence of crowding. Since the contributions to the free
energy from factors other than crowding have been worked
out before [7,8], we focus on the entropic penalty that
arises from crowding.

Polymer configurations in the presence of static ob-
stacles correspond to Brownian walk trajectories with a
diffusion constant b2=6 that have survived to a time t � n
with the obstacles playing the role of traps. The fraction of
allowed polymer configurations is therefore identical to the
survival probability of such a Brownian walker, leading to
the free energy expression for the entropic penalty in units
of kBT as

 Fscr�n� � � logS�n�; (1)

where S�t� is the survival probability of an appropriate
Brownian walker at time t [18,20]. For short times, S�t�
is given by the Smoluchowski solution S�t� � exp���t�
[21,22], while for long times, it is dominated by walkers
trapped in large void regions leading to the stretched ex-
ponential Donsker-Varadhan (DV) solution S�t� �
exp���t3=5� [23,24], where � and � are constants that
depend on trap radius, trap density, and geometry. Using
the exact solutions for S�t� [21,23], we can explicitly
compute the free energy penalty for a chain of length n
due to static obstacles at volume fraction �, yielding
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where N	 � �a=b�2��3=2 represents the crossover poly-
mer length from the Smoluchowski regime to the DV
regime [25]. For the dynamic obstacle case, the
‘‘polymer� obstacles’’ system comes to equilibrium.
The presence of the obstacles gives rise to a depletion
induced attraction between monomers that can lead to a
collapsed polymer phase similar to that induced by poor
solvents [26]. Simulations [27] and analytical work [28]
have shown that hard spheres can cause polymers to col-
lapse if the sphere density is high enough. For the range of
� (0:1<�< 0:5) that we are interested in, the collapse
occurs whenever a � 2b. For our purposes, it is then safe
to assume that our Gaussian polymer is in a collapsed
‘‘dense globule’’ state with a volume Nb3. The free energy
penalty is then given by the sum of the confinement en-
tropic penalty (��2R2

G=6R2 where R� N1=3b is the con-
fining radius) and the work done to create a cavity of

volume Nb3 that is devoid of obstacles, which is known
exactly from scaled particle theory [29]. The resulting free
energy penalty for the chain due to dynamic obstacles
reads as
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The general expression for total free energy, taking into
account the presence of the dividing wall and chemical
potential difference, of a chain with n monomers on the
trans side and N � n on the cis side is then given by
 

Fstot�n� � Fscr��c;N � n� � Fscr��t; n�

�
1

2
ln�n�N � n�
 � n�� (4)

for the static obstacles and

 Fdtot�n� � Fdcr��c;N � n� � F
d
cr��t; n� � n�� (5)

for the dynamic obstacles. It is to be noted that the loga-
rithmic term in Eq. (4), resulting from reduced chain
configurations confined in a half-space, does not appear
in Eq. (5) because Fdcr already includes the entropic penalty
associated with confining the chain to a dense globule. The
translocation process can now be described by diffusion
along the translocation coordinate n under a well-defined
Fd�s�tot �n�. The dynamics of this process is governed by a
Fokker-Planck equation which then allows one to compute
the translocation time (mean first passage time for the
chain to diffuse across the pore [7]) as

 �d�s� �
b2
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dneF
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0�: (6)

Since we have nonlinear terms in the free energy, we first
consider the behavior of � for a general free energy func-
tional with a power law scaling, e.g., F�n� � n�.
Equation (6) and saddle point approximations (in the large
N limit) to do the integrals yield

 �� N2�� for F�n� � �N � n��

�� exp�N�� for F�n� � n�
(7)

for translocation out of and into a crowded half-space,
respectively. Thus, we anticipate new exponents character-
izing the scaling properties of the mean passage time with
the number of monomers in the crowded medium.

We now consider the impact of crowding on transloca-
tion dynamics in some physically interesting situations.
The first example is that of a polymer escaping from a
crowded environment, i.e., where the cis side is crowded
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and the trans side is not (�t � 0). In the static case, the
dominant contribution to the free energy has the form
�2=5
c �N � n�3=5 for a long chain and �c�N � n� for a short

chain [see Eq. (2)]. Saddle point approximation shows �
scales as ��2=5

c N7=5 and ��1
c N, respectively. Exact nu-

merical evaluations of Eq. (6) confirm the predicted power
law scalings with bothN (Fig. 2) and�c (inset in Fig. 2). In
contrast to the dynamic case where the leading order
behavior simply corresponds to having an effective ‘‘os-
motic pressure’’ from obstacles, the driving force for trans-
location in randomly distributed immobile obstacles is
weakened by the existence of rare, large voids on the cis
side that sufficiently long polymers can explore. This is the
physical origin for the novel exponents describing the
scaling of � with respect to both N and �c for a long
enough chain in the static case.

Another situation of interest is translocation into a
crowded environment driven by a chemical potential gra-
dient. Here, we take �c � 0 and �� � �� where � is a
positive value representing a chemical potential gradient
that favors translocation into the crowded trans side. For
the static obstacle case in the large N limit, the linear
chemical potential term always dominates for any nonzero
value of �. Thus �� N in this limit, while for � � 0, ��
exp�N3=5� [from Eq. (7)]. The situation is similar for the
dynamic case but only if � exceeds a critical threshold ��

that is sufficient to overcome the osmotic pressure term
(�� is here defined by the value of the prefactor of the
n-linear osmotic pressure term in Fcr). For �<��, ��

exp�N� for a long chain when obstacles are mobile.
Figures 3(a) and 3(c) clearly show these distinct limiting
behaviors. The plots also reveal a striking phenomenon that
seems to occur at intermediate N. Depending on the pa-
rameter values, there appear to be regimes spanning several
orders of magnitude in polymer length, where � is nearly
independent ofN. The reason for this can be understood by
considering the form of the relevant free energy profile as a
function of the translocation coordinate n. For the static
obstacle case, there is a competition between a linear term
(�n) due to the chemical potential and a sublinear term
(�n3=5) that comes from the crowding for a long chain.
This gives rise to a free energy barrier whose height and
position are nearly independent ofN followed by a ‘‘down-
ward slope’’ all the way to n � N. The time taken to
surmount this barrier, which is independent of N, is rate-
limiting and hence effectively the total translocation time
for polymer lengths shorter than the value ofN at which the
time taken to traverse the downward slope becomes com-
parable. At this point, the scaling crosses over to being
linear in N. Similar behavior was discussed in the context
of polymer barrier crossing in a biased double well poten-
tial [30]. The situation for the dynamic obstacle case is
similar except that the presence of two sublinear terms
‘‘softens’’ the plateau because barrier height and position
are no longer independent ofN. Figures 3(b) and 3(d) show
the different translocation time scaling regimes in the (�t,
�) phase space at a fixed N. The disappearance of the
plateau regime for the dynamic obstacles at high concen-

FIG. 2. Translocation time � (in units of b2=DP) of a polymer
of length N releasing out of the crowded cis side with static
obstacles (solid lines: �c � 0:1, 0:3, 0:5 in descending order),
dynamic obstacles (dotted lines: for the same values of �c), and
no crowding (dashed-dotted line: �c � 0). Inset: � vs obstacle
volume concentration �c for static (solid lines: N � 105, 104,
103 in descending order) and dynamic obstacles (dotted lines: for
the same values of N). Note �t � �� � 0 here and the value of
b=a � 0:3 is used throughout the Letter.

(a) (b)

(c) (d)

FIG. 3 (color online). Translocation time � (in units of b2=DP)
vs N for (a) static and (c) dynamic obstacles on the trans side
(�t � 0:3, �c � 0) for different values of chemical potential
gradient, showing the asymptotic power law scalings as well as
the plateau regime at intermediate length scales. Note �� de-
notes the value of the prefactor of the n-linear term of Fcr in
Eqs. (2) and (3), respectively. Different scaling behaviors (ex-
ponential, plateau, power law) of � in the (�t, �) phase space for
(b) static and (d) dynamic obstacles at a fixed N � 105.
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trations is because the presence of two sublinear terms
becomes more apparent at higher �t.

As a final example, we consider the polymer transloca-
tion when both sides are crowded and �� � 0. For dy-
namic obstacles, the qualitative picture is similar to that
with trans side crowding and a chemical potential gradient
[compare Figs. 3(c) and 3(d) with Figs. 4(c) and 4(d)]. It is
to be noted that the presence of sublinear free energy
contributions from both sides of the membrane smears
out the plateau even more. In the static case, however,
the absence of a linear term in the large N limit gives
rise to qualitatively different results. As seen in Fig. 4(a),
even a minute amount of�t leads to �� exp�N3=5� at large
polymer lengths despite substantial crowding on the cis
side. This counter-intuitive behavior arises because the free
energy profile in this situation always has a barrier whose
height scales to leading order as N3=5, which in turn
implies exponential barrier crossing times.

The existence of regimes where the translocation time
depends very weakly on polymer length, apart from being
of theoretical significance, suggests the possibility of de-
signing filters for a tunable range of polymer lengths and
also has implications for ‘‘synchronized’’ transport of pro-
teins or nucleic acids from a wide range of sizes in the
cellular context. Our predictions can be tested by combin-
ing suspensions of uncharged colloids with a conventional
setup for DNA translocation experiments. The plateau
regimes of Fig. 3, for example, should be observed for
double-stranded DNA by crowding the trans side with
neutral colloids of radii 300 nm up to a volume fraction
�� 0:3 and applying an electric field of 0:1 V=cm across
a 100 nm thick dividing membrane.
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(b)

FIG. 4 (color online). � (in units of b2=DP) vs N for (a) static
(�t � 0:05) and (c) dynamic obstacles (�t � 0:2) for different
values of �c. Different scaling behaviors (exponential, plateau,
power law) of � in the (�t, �c) phase space for (b) static and
(d) dynamic obstacles at a fixed N � 3	 104. Note that �� � 0
here.
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