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We investigate the hydrodynamic interactions between micro-organisms swimming at low Reynolds
number. By considering simple model swimmers, and combining analytic and numerical approaches, we
investigate the time-averaged flow field around a swimmer. At short distances the swimmer behaves like a
pump. At large distances the velocity field depends on whether the swimming stroke is invariant under a
combined time-reversal and parity transformation. We then consider two swimmers and find that the
interaction between them consists of two parts: a passive term, independent of the motion of the second
swimmer, and an active term resulting from the simultaneous swimming action of both swimmers. The
swimmer-swimmer interaction is a complicated function of their relative displacement, orientation, and
phase, leading to motion that can be attractive, repulsive, or oscillatory.
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Because of their size, the swimming motion of micro-
scopic and mesoscopic organisms, such as bacteria and
cells, corresponds to low Reynolds number. As pointed
out by Purcell [1], in this regime swimming mechanisms
are very different from those operative at human length
scales. In particular, any swimming strategy must involve a
cyclic and non-time-reversible motion. Examples include
the motion of a sperm flagellum [2], the synchronized
beating of cilia on ciliated protozoa [3], and the Dreyfus
microswimmer [4] where a colloid is driven by a tail of
magnetic particles actuated by an oscillating field.

Interesting progress has been made in understanding the
propulsion of individual swimmers [2,5] and in develop-
ing optimal swimming strategies [6,7]. However, much
less is understood about the collective behavior of micro-
swimmers. Experiments include works by Dombrowski
et al. [8], who observed large-scale coherence in bacterial
dynamics in sessile drops, and Wu and Libchaber [9], who
found particle superdiffusion in soap films containing bac-
teria. Numerical simulations have been performed on sus-
pensions of rod shaped motile particles [10,11], which
show that at high concentrations collective motion and
local ordering can occur, but that long ranged nematic
ordering is hydrodynamically unstable. Such behavior
has been previously predicted theoretically [12] and ap-
pears to be a generic feature of so-called active systems
[13].

An important step towards understanding the behavior
of many swimmers is to calculate the hydrodynamic inter-
action between two swimmers. Previous studies have in-
vestigated this problem for a number of special cases. For
example, Ishikawa and Hota [14] performed experiments
to find the interactions between two swimming Para-
mecium cells. Computational modeling of the hydrody-
namic interaction between two flagella was reported in
[15,16]. Ishikawa et al. [17] modeled swimmers as spheres
with prescribed tangential velocities (known as squirmers).
They calculated the far field interaction between two

squirmers and matched the results onto a near field lubri-
cation theory. Because this approach involves taking the
time average of the flow field around each swimmer, any
interaction arising from the flow generated at time scales
shorter than the swimming stroke is neglected. We find that
these neglected terms are, in fact, very important for the
dynamical behavior of a wide class of swimmers.

The aim of this Letter is to calculate two swimmer
interactions, emphasizing the importance of the details of
the swimming stroke. We present both analytic and nu-
merical results based on a minimal swimming model, first
introduced by Najafi and Golestanian [18]. We first con-
sider the average flow field around a swimmer. At short
distances the swimmer behaves like a pump that moves
forward by pushing fluid from in front to behind itself. At
large distances the average flow field around a swimmer is
naively expected to be dipolar (�r�2). However, we argue
that for a wide class of swimmers, which are invariant
under a combined time-reversal and parity (TP) transfor-
mation, the leading order term vanishes and the far flow
field has a r�3 dependence. (The parity transformation is
r, �r.) Examples of these swimmers include Purcell’s
three link swimmer [1], the three sphere swimmer of Najafi
and Golestanian [18], the snake swimmer, and a helical
filament. Indeed, the r�3 term in the velocity field will
remain important for many swimmers that are close to TP
invariant.

We then consider two swimmers, A and B, say. We find
that the effect on A of B’s swimming consists of two
principal components: a passive term, which depends
only on the average flow field generated by B and which
takes the expected dipolar form, and an active term result-
ing from the simultaneous swimming motion of both A and
B, which does not. Interestingly, it is the latter that domi-
nates, meaning that interactions become not only a com-
plicated function of relative displacement and orientation,
but also of relative phase. We show that trajectories of the
two swimmers can be attractive, repulsive, or oscillatory.
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Locomotion is initiated by shape changes in the
swimmer, which induce forces acting on the surrounding
fluid and thus create a flow. The fundamental solution of
the Stokes equations describing the response to a point
force, f, is called a stokeslet and creates a fluid flow
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where y is the point of application of the force, r � jx�
yj, and � is the fluid viscosity. Since the Stokes equations
are linear, the fluid motion associated with swimming may
be given by a superposition of such stokeslet flows. At
large distances these may be expanded in r�1 to obtain the
asymptotic behavior. Since the total force on the swimmer
has to be zero, the leading order term vanishes [2]. The
next term, which varies as r�2, is called a force dipole and
is generally assumed to dominate the far field behavior
[19,20].

Indeed, this is always true of the instantaneous fluid
velocity. However, an intriguing feature of the average
flow is that the force dipole term can be absent. To show
this, we employ a simple model swimmer consisting of
three spheres of radius a joined by thin rods, or ‘‘arms.‘‘ It
moves by shortening and extending these arms in a peri-
odic and time irreversible manner, as depicted in Fig. 1. A
unit vector n pointing in the direction of motion, left to
right in Fig. 1, defines an orientation for the swimmer. The
variable D gives the extended arm length, and �F and �B

denote the amplitudes of the strokes performed by the front
and back arms, respectively. Najafi and Golestanian [18]
obtained an analytic expression for the velocity of the
swimmer for �F � �B using the Oseen tensor formulation
of hydrodynamics, valid in the limit a=D� 1.

Using a similar approach, we have calculated the aver-
age flow field generated by the swimmer:
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where T is the period of the swimming stroke. For �F � �B

the swimmer is TP invariant and the dipolar term vanishes.
The reason TP invariant swimmers do not have any

dipole contribution can be seen as follows. If a general
swimming motion is invariant under simultaneous time
reversal and parity transformations, then the average flow
field must also have this property. The dipole term, how-
ever, changes sign under a TP transformation, and so the
coefficient multiplying it must be zero. [This can be veri-
fied for the first term in Eq. (2).]

When the front and back arms have different amplitudes,
the TP invariance is broken and both r�2 and r�3 contri-
butions appear in the averaged far field flow in Eq. (2). A

comparison of the magnitude of the two contributions
shows that the dipolar term only dominates for distances
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which diverges when the amplitudes of the two arms
become equal, as required by the TP invariance.

The velocity field generated by this swimmer, averaged
over a swimming cycle, is shown in Fig. 2. It was obtained
using a numerical integration of the Oseen tensor equation,
subject to the constraint that the swimmer is force and
torque-free. Details of this method are given in [21].
Close to the middle sphere the fluid is clearly seen to
move to the left; essentially the swimmer acts like a
pump that moves fluid from in front of it to behind it,
leading to the swimmer moving to the right. The analytic
far field expansion Eq. (2) accurately describes (to within
10%) the numerical flow for distances further than around

FIG. 1 (color online). The cyclic motion of the linear three
sphere swimmer [18]. The swimmer goes through the four steps
(i)–(iv) and returns to its original shape, but is displaced by a
distance � to the right.

FIG. 2 (color online). The flow field around a swimmer, aver-
aged over one swimming cycle. The direction of swimming is
from left to right and the flow is axisymmetric about the
swimmer. The magnitude of velocities are plotted on a logarith-
mic scale to enable both the near sphere and far field behavior to
be observed simultaneously. The parameters used were a �
0:1D, �B � 0:2D, and �F � 0:4D.
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three swimmer lengths. The dashed circle demarcates the
estimated distance, Eq. (3), at which the far field flow
crosses over from r�3 to r�2 dipolar scaling.

We now consider how the trajectory of a second nearby
swimmer (A) will be altered by this flow field. The inter-
action will involve A both being advected by, and rotating
in, the flow field generated by B. We find that there are two
contributions to the interaction. The first, which we refer to
as the passive term, is independent of the motion of A. This
contribution may be calculated directly using the average
flow field for a single swimmer, Eq. (2).

In addition, there is an active term that describes the
more interesting interaction arising as a consequence of
both organisms trying to swim. This term encodes all of the
information about how the interactions depend on the
relative phase of the swimmers. Using the Oseen tensor
to describe the hydrodynamics, we have determined the
leading order contribution to the active interaction, finding
a net swimming stroke rotation and translation given by
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where the subscripts A and B label the swimmers, and r is
the position vector of A relative to B. �xA represents the
translation vector, and ��A the rotation vector (whose
magnitude and direction define the rotation angle and
axis, respectively), induced in A as a result of the hydro-
dynamic interaction with B. Although the rotation is higher
order in r�1, it should not be considered less important.
This is because small changes in angle can give rise to
large positional displacements in the long time limit. The
relative phase of the swimmers enters through the function
�, which we illustrate for a selection of parameter values
in Fig. 3.

When the two contributions to the interactions are com-
pared, we find that the active contribution dominates for all
distances
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This behaves similar to the average fluid flow in that it
diverges as the swimmer becomes TP invariant. However,
there is a crucial difference for non-TP invariant
swimmers. The additional factor of D=a is large, and
therefore ensures that for all distances over which the
interactions are strong enough to be significant, the domi-

nant contribution is from the active term, despite the fact
that it is higher order in r�1. Thus, in general, even though
the average flow field may be dipolar, the interactions are
not.

We turn now to an investigation of the long time behav-
ior resulting from these interactions by considering how
the trajectories of two identical swimmers depend on their
relative position, orientation, and phase. We focus only on
the case when the swimmers follow almost parallel trajec-
tories since this allows time for the weak r�3 interactions
to have an appreciable effect. We consider first symmetric
swimmers (�B � �F) swimming in phase, before looking
at how the behavior changes when these constraints are
relaxed. The results are summarized in Fig. 4(a). Swimmer
A initially lies at the origin (as shown in the figure) and B is
aligned parallel and displaced to the corresponding point in
the diagram. The figure is divided into different regions,
labeled A, R, O, and P, corresponding to the four different
types of long term behavior that were observed: attractive,
repulsive, oscillatory, and parallel trajectories.

Typical trajectories for each of these types of behavior
are shown in Figs. 4(i), 4(ii), 4(iii), 4(iv), 4(v), and 4(vi).
For accuracy, the trajectories were obtained numerically
[21], although the results that follow from iterating the
analytic formulas, Eqs. (4), are in close agreement. All
scales are in units of D, the swimmer arm length. The
parameters chosen were a � 0:1D and � � 0:3D, giving a
displacement per cycle of � � �7=12�a�2=D2 � 0:005D.
Thus, since the length scale of the swimming motion is
typically �50D, the trajectories evolve over time scales 3
or 4 orders of magnitude larger than that of the individual
swimming stroke. The lines terminate when the swimmers
get too close, as here the Oseen tensor approximation
breaks down.

In addition to simple attractive or repulsive behavior, the
swimmers also exhibit intriguing oscillatory trajectories
that may be either of small amplitude about separated
parallel swimming paths, as in region P, or of larger
amplitude with the two swimmer’s trajectories crossing
each other, as in region O. It is notable that these trajecto-
ries exhibit a slow drift superimposed onto the oscillations.
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1
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Φ

FIG. 3 (color online). The function � describing the effect of
the relative phase of the swimmers on the interactions. The
parameters used were the following: black line �B � �F �
0:3D, curve to the left of this (red), �B � 0:4D, �F � 0:2D,
and curve to the right of this (blue), �B � 0:2D, �F � 0:4D.
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The oscillations originate from the rotational part of the
active interaction, while the superimposed drift is a con-
sequence of the translational part. This highlights the
significance of rotational interactions, despite their being
higher order in r�1.

The type of trajectories observed depends on the relative
phase of the swimmers. For example, Fig. 4(b) shows the
long term behavior of two swimmers that are exactly � out
of phase. This change in behavior is well accounted for by
� changing sign (see Fig. 3) in the far field analytic results
of Eqs. (4).

Breaking the TP invariance gives rise to qualitatively
new trajectories. In particular, the oscillatory behavior
characteristic of region O is no longer stable, with the
swimmers diverging for �F < �B [Fig. 4(v)] and converg-
ing for �F > �B [Fig. 4(vi)]. This behavior is of particular
interest as it suggests that suspensions of swimmers driven
in phase might spontaneously start to form chains.

In this Letter, we have considered the collective dynam-
ics arising from hydrodynamic interactions between two
model microswimmers. These interactions are not domi-

nated by the leading nonzero term in a far field expansion
of stokeslets, but rather by a higher order active term
describing the simultaneous motion of both swimmers
while they swim. Consequently, the long time behavior is
sensitive to the relative phase of the two swimmers and
may be tuned by making small alterations to the details of
the swimming stroke.

Understanding the interaction between two swimmers is
only a first step towards interpreting the collective dynam-
ics of larger groups of micro-organisms. Both near field
hydrodynamic interactions between cells that approach
closely and many body interactions are likely to be impor-
tant. Moreover, the relative phases of real swimmers will
vary unless a locking mechanism is operative, although it
will be possible to control the phases of artificial swimmers
that are externally actuated.
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FIG. 4 (color online). Long time behavior of two swimmers, A
and B, (a) in phase, and (b) � out of phase. (i)–(vi) illustrate a
selection of trajectories representing attractive (A), repulsive
(R), oscillatory (O), parallel (P), expanding oscillatory (OE),
and contracting oscillatory (OC) behavior, respectively.
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