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Images directly visualizing the spatial spin-diffusion process are reported. The measurements were
performed using a magnetic resonance force microscope. The field gradient associated with the force-
detection experiment is large enough to affect the spin dynamics and a modified kinetics of the spin-
diffusion process is observed. The effects of the gradient were compensated for by a pulse scheme and a
pure Zeeman diffusion rate constant of D � �6:2� 0:7� � 10�12 cm2=s in CaF2 was observed.
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The concept of spin diffusion is of paramount signifi-
cance in a variety of magnetic resonance experiments. It
comprises the spatiotemporal transport of polarization in
many-spin systems and was first introduced by Bloem-
bergen in 1949 [1] to explain the unexpectedly fast spin-
lattice relaxation in solids by diffusive transport of spin
polarization to paramagnetic relaxation sinks. Spin diffu-
sion is not only an interesting theoretical issue in many-
body theory but is a key concept for many important
applications, e.g., atomic-resolution structure determina-
tion of proteins [2], domain size determination in polymers
and biopolymers [3,4], hyperpolarization of nuclei, e.g., in
nanocrystals [5], to name a few.

Following the spin-diffusion (SD) process directly in
space is a challenge because the rate constants are small
and lead to transport over distances of the order of micro-
meters only, before the nuclear polarization has decayed
due to spin-lattice (T1) relaxation. For a long time, quanti-
tative information about spin diffusion was only available
through indirect measurements, e.g., of T1 relaxation in
diamagnetic systems doped by paramagnetic impurities
[6]. Only recently, scattering experiments by Zhang and
Cory [7] have provided a more direct experimental access
to spin diffusion. Here we report the first direct observation
of spin diffusion in real space by spatially and time-
resolved magnetic resonance force microscopy (MRFM)
[8].

The mechanism for spin diffusion is provided by mutual
flip-flop processes of neighboring spins, induced by the
magnetic dipole-dipole interaction. It is, even for many-
spin systems, a coherent and deterministic process as dem-
onstrated experimentally by time-reversal experiments [9].
Nevertheless, it is often adequate and useful to describe the
SD process by an incoherent, diffusive mechanism.
Theoretical studies which predict the SD rate constant
from the crystal structure include the moment-method
[10,11], perturbation approaches [12] and irreversible sta-
tistical mechanics [13]. Because the MRFM measurements
take place in a strong field gradient, spin flip flops do not
conserve the Zeeman energy even if they are, in the ab-

sence of the gradient, magnetically equivalent [14,15]. The
attenuation of electron spin diffusion by stray field gra-
dients, as reflected in modified T1 relaxation times [16],
was demonstrated by MRFM [17].

Our experiments were performed in a 6 T field at room
temperature on 19F spins in CaF2. The rotating-frame
Hamiltonian of the spin-system is dominated by the
Zeeman and dipolar contributions, H �H Z �H d,
with
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where � denotes the gyromagnetic ratio, rkj the distance
between nucleus k and j, and �kj the angle between the
main field B�r� and the internuclear vector between spin k
and j, rkj.

We consider the time evolution of a system described by
an initial spin density operator of the form

 ��r� � e�H �r�=kT=Z � �1� �Z;0H Z � �d;0H d�=Z;

(3)

where the � sign stands for the high-temperature approxi-
mation. Z � Tr�e�H �r�=kT� denotes the partition function
and �Z �

1
kbTZ

and �d �
1

kbTd
the inverse spin temperatures

of the Zeeman and dipolar bath, respectively [18]. The
Zeeman and the dipolar baths will equilibrate with the
lattice with the relaxation rate constants R1 and R1d,
respectively.

In the absence of a field gradient �Z and �d are separate
constants of the motion and Zeeman and dipolar polariza-
tion diffuse independently with diffusion rate constants D
and Dd. In a field gradient, however, the mutual spin flip-
flops are no longer energy conserving and the baths be-
come coupled. For jrjBjja	 Bd the diffusion is
quenched entirely, where a denotes the shortest inter-
nuclear distance, B is the static magnetic field and Bd is
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the local field produced by the dipole interaction to all
other spins in the sample. When jrjBjja
 Bd, but the
gradient jrjBjj is large enough to be noticeable in the

diffusion path over the period of T1, jrjBjj
����������
DT2

1

q
� Bd,

the diffusion is merely reduced. This is the case we look at
here.

Genack and Redfield derived the partial differential
equations describing this process [14],
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�r�B�Z� � �rB��d�: (5)

The magnetization associated with �Z and �d is Mi �

�iCB, the energy is Ei � ��iCB2
i , where C � NI

3 I�I �
1��2

I@ is the Curie constant and NI is the number of spins
with spin quantum number I. Spin lattice relaxation can be
incorporated into Eqs. (4) and (5) by adding the terms
� �0��Z

T1
and � �0��d

T1d
, respectively. For our experiments,

Eqs. (4) and (5) can be simplified by replacing r�B�Z�
with Br�Z.

In the absence of a field gradient rB � 0, the two
Eqs. (4) and (5) are decoupled and Eq. (4) reduces to the
well-known diffusion equation @

@t �Z � D��Z.
With the gradient, the time evolution of a magnetization

profile starting with a step function at the origin (�Z�z� �
�0 for z � 0 and �Z�z� � ��0 otherwise) can be divided
into two time regimes. Initially the magnetization around
z � 0 flows rapidly and tries to annihilate the step by
equalizing the Zeeman spin temperatures. In a field gra-
dient the energy mismatch for the flip-flop processes must
be absorbed by the dipolar bath, which, due to its consid-
erably smaller heat capacity, becomes polarized quickly
and brings the diffusion process to a halt. At this point in
time the diffusion has proceeded a distance such that the
corresponding frequency shift is roughly equal to the di-
polar coupling strength [ Bd

jrjBjj � 30 nm for jrjBjj �
40 G

�m and Bd � 1:3 G (vide infra)]. In the second time
regime, further Zeeman spin diffusion becomes possible on
a slower time scale thanks to spatial diffusion of the dipolar
order. This process is described by the first term in Eq. (5)
which changes the temperature of the dipolar bath and
allows further Zeeman spin diffusion to take place. This
slow process depends on the size of Dd, which is on the
same order as D [11,19]. Only for Dd ! 1 the Zeeman
diffusion could proceed unhindered by the field gradient.

To measure the SD rate for Zeeman polarization in the
presence of a field gradient, the bottleneck of the dipolar
reservoir must be eliminated. This could be easily achieved
by periodic inversions of the dipolar spin temperature. The
dipolar energy, which tends to block the diffusion of the
Zeeman magnetization before the inversion, will now drive

the diffusion after the inversion [Eq. (4)]. If the inversions
are applied faster than the buildup of dipolar energy the
gradient will have no influence on the observed diffusion
rate which is then identical toD. Experimentally, it is much
simpler to realize periodic inversions of the Zeeman tem-
perature while keeping the dipolar temperature constant.
The influence on spin diffusion is the same. These inver-
sions are simply achieved by adiabatic inversions of the 19F
spins corresponding to an inversion of �Z.

The pulse sequence used for the measurements is shown
in Fig. 1. A frequency-selective hyperbolic secant pulse
[20] is used to generate a step function for the initial
magnetization. This is followed by an evolution time
with, optionally, a number of equally spaced inversion
pulses. The short prepulse shown in the scheme does not
influence the behavior of the spins. It only helps to reduce
artifacts produced by the sudden heating of the cantilever
caused by rf pulses. A Hadamard 16 scheme, described in
detail elsewhere [21], is applied to improve the detection
sensitivity. The signal is detected by adiabatic inversions
from a triangular frequency modulated pulse, whose basic
frequency matches the eigenfrequency of the cantilever. A
more detailed description of our MRFM probe can be
found in [22]. We use an iron cylinder as the gradient
source (200 �m diameter, 10 mm length, Bsat � 1:75 T).
The single crystal CaF2 sample was glued to the tip of a
custom-made silicon cantilever [23] (500 nm thick,
350 �m long, 20 �m wide, k � 2:4� 10�3 N=m, loaded
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FIG. 1. Pulse sequence for spin-diffusion measurements. The
first hyperbolic secant pulse inverts the magnetization over half
of the field of view later acquired (step function). During the
mixing time spin diffusion can proceed, optionally under the
influence of n equally spaced refocusing pulses. The prepulse
reduces artifacts from direct rf excitation of the cantilever. The
mechanical detection is preceded by a Hadamard encoding step
to increase the detection sensitivity [21] and finally obtained
under triangular frequency sweeps with a period matched to the
cantilever eigenfrequency for resonant excitation.
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frequency fc � 832 Hz and Q � 30 k). The crystal was
�25 �m in each dimension. Further details on the acquis-
iton parameters can be found in the supporting information
[24]. The partial differential equations were numerically
solved [25] with MATLAB (Mathworks, Inc.). The spatial
derivatives of the magnetization at the end of the interval
were set to zero to provide boundary conditions compatible
with T1 relaxation. The following parameters were used for
all simulations: B � 5:94 T, T1 � 180 s (120 s in the
presence of refocusing pulses) and jrjBjj between 35
and 45 G=�m.

The diffusion of magnetization in the presence of the
field gradient is shown in Fig. 2. The black data points in
Figs. 2(a) and 2(b) are read out immediately after the
inversion of half of the field of view. The initial condition
(black circles) for the spin-diffusion process is a step
function. Images of the magnetization, recorded 15.5 and
64.5 s after the inversion (in the absence of refocusing
pulses), are given in Fig. 2(a). Spin diffusion tends to
equilibrate the spin temperature and the step function
broadens. The influence of T1 relaxation manifests itself
in the spectra by a reduction of the step size, also in the
regions not influenced by diffusion.

The time evolution under inversion pulses is shown in
Fig. 2(b). The experiments shown in the two figures use the
same mixing times and clearly, spin diffusion proceeds
significantly faster than in the experiment of Fig. 2(a).
The inversion of the Zeeman spin temperature also leads
to a different T1 relaxation behavior, namely, a reduction in
the step size. The center of the step function remains at
zero magnetization.

In the absence of a field gradient, the time evolution of
initial step function for the magnetization is given by the
error function, which, including relaxation, is Mzf1�
e��tmix=T1�
erf� z����������

4Dtmix

p � � 1�g. In the presence of the gra-

dient, the situation becomes more complicated. As

shown in the supporting information [24], the resulting
profiles can still be well approximated with an error
function, where the diffusion rate constant D is replaced
by an effective diffusion constant Deff . Because of the
inversions the magnetization will decay to zero:
Mze

��tmix=T1�erf� z����������
4Dtmix

p �.

In Fig. 2(c) the fitted Deff for a spin-diffusion time of
15.5 s, is plotted as a function of the number of inversions.
The experimental values given are statistical averages of
the data from five positions in the crystal. The effective
spin-diffusion rate approaches a value of Deff �
�6:2� 0:7� � 10�12 cm2=s for a large number of inversion
pulses. This value defines the Zeeman diffusion rate con-
stantD. Using this value, all the experimental data of 2(a)–
2(c) can be simultaneously fitted using the parameters
Dd � �11� 11� � 10�12 cm2=s, Bd � �1:3� 0:3� G and
T1d � �12� 11� s. The simulations with these values are
shown, as solid lines, in 2(a)–2(c). Clearly, all experimen-
tal data are in excellent agreement with the model. The
experiment is, however, not very sensitive to parameters
T1d and Dd of the dipolar bath.

In Fig. 3 the time evolution of the dipolar spin tempera-
ture is simulated, using the same parameters as above. In
Fig. 3(a) the rapid buildup of a sharp peak in the dipolar
energy blocks the spin diffusion of the Zeeman polariza-
tion [see Eq. (4)], but when inversion pulses reverse the
polarization gradient, the buildup is reversed as well, dis-
played in Fig. 3(b) and the coupling between dipolar and
Zeeman bath averages out.

The data presented are the first direct observation, in real
space, of nuclear spin diffusion in full spatiotemporal de-
tail. The effect of the presence of a field gradient, where the
Zeeman and dipolar diffusion become coupled and the
dipolar bottleneck limits the diffusion rate, was directly
observed. Periodic inversion of the Zeeman populations
was demonstrated to remove this bottleneck and to allow
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FIG. 2 (color online). (a) Spin diffusion in CaF2 and (b) Inversion-driven spin diffusion for evolution times of 0, 15.5, and 64.5 s with
0, 15, and 63 inversions [black circles, blue (dark gray) boxes, and red (light gray) triangles, respectively]. The solid curves are
simulations. Note that the overall amplitude of the experimental data was normalized to match the simulations, compensating for drift
(largest scaling factor 1.4). The effects of spin diffusion are much stronger in (b) than in (a). The dashed lines in part (a) are simulations
of the experiment without spin-lattice relaxation for 15.5, 64.5, and 600 s mixing time, respectively. (c) Dependence of the effective
spin-diffusion rate Deff on the number of inversion pulses during a constant mixing time of 15.5 s. The black curve is a simulation fitted
to the experimental data [red (gray) circles]. With more pulses the spins diffusion is inhibited less by the gradient.
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for spin diffusion independent of the field gradient. The
rate constant obtained in these experiments (Deff � �6:2�
0:7� � 10�12 cm2=s) matches the values (obtained without
gradient) in the literature [7] with rate constants between
5.3 and 7:1� 10�12 cm2=s depending on the crystal ori-
entation and theoretical values spanning 5.0 to 8:2�
10�12 cm2=s [11,13,26] very well.

We envision that similar measurements can be applied
for the characterization of materials heterogeneous on the
micrometer scale, e.g., polymers and biopolymers. The
experiments should also be suited to follow other diffusion
processes, e.g., proton diffusion in proton conductors or
molecular diffusion, e.g., in water containing systems.
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FIG. 3 (color online). Time evolution of the inverse dipolar spin temperature �d during the experiment described in Fig. 2. Part (a)
shows the evolution without inversions. The white line emphasizes the spatial scan at 15.5 s for which the Zeeman polarization is
shown in Fig. 2(a). The step in the magnetization initially polarizes the dipolar reservoir. This blocks the diffusion of Zeeman
polarization. Further time evolution is dictated by the diffusion of dipolar order. Part (b) shows the inverse dipolar spin temperature
when the magnetization is inverted approximately every second (b). This inversion reverses the direction of the magnetization gradient
and now the prior buildup of dipolar energy drives further Zeeman diffusion.
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