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We show that the spin-current response of a semiconductor crystal to an external electric field is
considerably more complex than previously assumed. While in systems of high symmetry only the spin-
Hall components are allowed, in systems of lower symmetry other non-spin-Hall components may be
present. We argue that, when spin-orbit interactions are present only in the band structure, the distinction
between intrinsic and extrinsic contributions to the spin current is not useful. We show that the generation
of spin currents and that of spin densities in an electric field are closely related, and that our general theory
provides a systematic way to distinguish between them in experiment. We discuss also the meaning of
vertex corrections in systems with spin-orbit interactions.
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Ground-breaking work in past years has turned semi-
conductor spin electronics into a richly rewarding field,
both theoretically and experimentally. The application of
an electric field to a semiconductor sample gives rise to a
nonequilibrium spin current [1–4] as well as a steady-state
spin density in the bulk of the sample [5–7]. The latter was
first observed several decades ago [5], while the recent
imaging [8] and direct measurements of spin currents
[9,10], together with the achievement of the room-
temperature spin-Hall effect [11] have stimulated an enor-
mous amount of research [12]. Other schemes for generat-
ing and detecting spin currents have been implemented or
proposed [13].

The development of electrical spin manipulation tech-
niques has brought the fundamental physics of spin trans-
port under intense scrutiny [14–21]. Debate has focused on
definitions of spin currents [14], on whether spin currents
are transport or background currents [15], whether
scattering-independent or scattering-dependent contribu-
tions are dominant [12], on the role played by spin
Coulomb drag [19], and on spin accumulation at the
boundary [22]. Whereas most studies to date have paid
significant attention to common semiconductors and asym-
metric quantum wells (QW) [22–36], recent developments
call for an in-depth investigation of neglected aspects.

In this Letter, we first discuss the relationship between
spin currents in a crystal and the symmetry of the under-
lying lattice. Such an analysis has been enlightening in the
context of nonequilibrium spin densities excited by an
electric field. If the response of the spin density s to an
electric field E is given by s� � Q�

j Ej, nonzero compo-
nents for the material-specific spin density response tensor
Q�
j are permitted only in gyrotropic crystals [5]. Yet such

an analysis has not been done for spin transport. We there-
fore determine the components of the spin-current re-
sponse tensor allowed by symmetry in an electric field,
providing systematic proof that spin currents in response to

an electric field can be much more complex than the spin-
Hall effect [37]. This result is completely general and is not
sensitive to the definition of the spin current or to whether
the electric field is constant or time dependent. The sub-
sequent calculations confirm these predictions by deter-
mining the corrections to the density matrix present in an
electric field and demonstrating their intimate relationship
with spin precession. We argue that, if spin-orbit interac-
tions are present only in the band structure, only one
contribution to the spin current exists, which appears in-
trinsic in the weak momentum-scattering limit and extrin-
sic in the strong momentum-scattering limit. We show that
spin currents and bulk spin densities in an electric field
arise from linearly independent contributions to the density
matrix, and that certain setups can measure effects due
solely to spin currents. Our work considers realistic scat-
tering potentials and is very relevant to experiment, where
the high symmetry often assumed in theoretical approaches
is usually not present.

The spin-current operator is defined as Ĵ �
i �

1
2 �ŝ

�v̂i �
v̂iŝ��, where ŝ� represents the spin component �, and the
velocity operator v̂i � 1=@�@Ĥ=@ki�, with Ĥ the
Hamiltonian. An alternative, more realistic definition of
the spin current has been proposed [14], according to
which Ĵ �

i � d=dt�r̂iŝ��. Yet we remark that from a sym-
metry point of view these two definitions are equivalent so
that the following symmetry analysis applies to both defi-
nitions. The spin current Ĵ is a second rank tensor that can
be decomposed into a pseudoscalar part, an antisymmetric
(spin-Hall) part, and a symmetric part. The pseudoscalar
part is tr�Ĵ � � 1

3 ŝ � v̂ and represents a spin flowing in the
direction in which it is oriented. The symmetric and anti-
symmetric parts are given, respectively, by 1

2 �ŝ
�v̂i � v̂�ŝ

i�.
The pseudoscalar and symmetric parts will be referred to as
non-spin-Hall currents. Under the full orthogonal group
only the antisymmetric (spin-Hall) components of Ĵ are
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allowed, indicating that these components are always per-
mitted by symmetry.

In general, the spin-current response of a crystal to an
electric field E is characterized by a material tensor T
defined by J �

i � T�ijEj. For the 32 crystallographic point
groups the symmetry analysis [38] for the tensor T is
established by means of standard compatibility relations
[39]. One is particularly interested in those groups in which
non-spin-Hall components may be present. Our calcula-
tions show that the pseudoscalar part of the spin current is
only allowed by 13 point groups, while the symmetric part
is allowed in all systems except those with point groups O,
Td (zinc blende), or Oh (diamond). Lower symmetries,
allowing non-spin-Hall currents, are characteristic of sys-
tems of reduced dimensionality.

It is well known that the generation of a spin density by
an electric field is the inverse of the circular photogalvanic
effect [5,13], while the spin-Hall effect also has an inverse
[10]. Since spin densities induced by electric fields are
restricted to gyrotropic crystals [5] the same restriction
applies to the circular photogalvanic effect. Similarly, the
symmetry analysis developed here is also applicable to the
inverse spin-Hall effect which needs to be complemented
by an inverse non-spin-Hall effect in systems with reduced
symmetry.

In order to verify the proposition that non-spin-Hall
currents may exist in a variety of crystals, we discuss
spin currents induced by an electric field in spin-1=2
electron systems. For electrons the effective Hamiltonian
is written asH � Hkin �Hso, whereHkin � @

2k2=2m� and
Hso �

1
2� ��, where � is a momentum-dependent effec-

tive Zeeman field. In the weak momentum-scattering re-
gime we have "F�p=@� ��p=@� 1, with �p the mo-
mentum relaxation time and "F the Fermi energy, whereas
in the strong momentum-scattering regime "F�p=@�
1� ��p=@.

The system is described by a density operator �̂, which
is expanded in a basis of definite wave vector as

 �̂ �
X
n;n0

X
k;k0
�nn0kk0 �t�j nk�t�ih n0k0 �t�j: (1)

A constant uniform electric field E is included in the
crystal momentum through the vector potential A such
that k � q� eA=@, and the wave functions are chosen to
have the form j nk�t�i � eiq�rjunk�t�i, where junk�t�i are
lattice-periodic functions that are not assumed to be eigen-
functions of the crystal Hamiltonian. In this basis the
matrix elements �nn0kk0 �t� form the density matrix and
the impurity potential has matrix elements Ukk01�
V kk0 , where V kk0 is the spin-dependent part.

The time evolution of the density operator is given by
the quantum Liouville equation, which allows us to derive
rigorously the time evolution of the part of the density
matrix � 	 �nn0kk diagonal in wave vector. We subdivide
� � �0 � �E, where �0 is given by the Fermi-Dirac dis-

tribution, and the correction �E is due to the electric field
E. To first order in E, �E satisfies

 

@�E
@t
�
i
@

H;�E� � Ĵ��E� �

eE
@
�
@�0

@k
; (2)

where Ĵ��E� is the collision integral to be given below. The
eigenvalues of H are �� � "0 ��=2, with "0 �

@
2k2=2m�. The spin-current operator is simply Ĵ �

i �

@kis�=m� �
1
4 @@��=@ki. In electron systems we usually

have Hso � Hkin, thus �0  f01�Hso@f0=@"0, where
f0�"0� is the Fermi-Dirac distribution. �E is divided into
a scalar part and a spin-dependent part, �E � fE1� SE.
To first order in Hso=Hkin the scattering term can be ex-
pressed as Ĵ��E� � �Ĵ0 � Ĵs � Ĵv��fE� � Ĵ0�SE�, where
 

Ĵ0�fE� �
2�ni
@

Z ddk0

�2��d
jUkk0 j

2�fE� f0E���"0�"00�; (3a)

Ĵs�fE� �
�ni
2@
� �

Z ddk0

�2��d
jUkk0 j

2�fE� f0E�f��̂� �̂0�

� 
���� � �0������� � �
0
���

� ��̂� �̂0�
���� � �0������� � �0���g; (3b)

Ĵv�fE� �
2�ni
@

Z ddk0

�2��d
Ykk0 �fE� f0E���"0� "00�: (3c)

In the above ni is the impurity density, d is the dimension-
ality of the system, primed quantities denote functions of
k0, �̂ is a unit vector along �, and Ykk0 �

R
ddk00=�2��d�

�Ukk00V k00k0 �V kk00Uk00k0 �. Equation (3a) is the usual
scalar scattering term, Eq. (3b) is due to band structure
spin-orbit coupling, and Eq. (3c) is due to spin-orbit cou-
pling in the impurities. We will assume henceforth that
band structure spin-orbit interactions are much stronger
than those due to impurities.

For fE we obtain the standard correction fE �
�eE�p=@�@f0=@k1. As a result, the effective source term
that enters the equation for SE is �s � Ĵs�fE�, where �s is
the spin-dependent part of �eE=@�@�0=@k. In analogy with
the Gram-Schmidt orthogonalization of vectors, this effec-
tive source term can be divided into two parts, �s �

Ĵs�fE� � �k ��?, of which �k commutes with the
spin-orbit Hamiltonian

 �k �
trf
�s � Ĵs�fE��Hsog

tr�H2
so�

Hso; (4)

while �? is the remainder. In matrix language �? is
orthogonal to the Hamiltonian, thus tr��?Hso� � 0. To
find �k and �? we define projectors Pk and P? onto and
orthogonal to Hso, respectively. Acting on the basis matri-
ces �, Pk��2�Hso=�2, while P?�x�
��2

y��2
z��x�

�x�y�y��x�z�z�=�2
k, and the remaining terms are

obtained by cyclic permutations.
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SE can likewise be divided into two linearly independent
contributions, Sk and S?, the former of which commutes
with Hso while the latter is orthogonal to it. It is helpful to
think of Sk as the distribution of conserved spins parallel to
� and of S? as the distribution of precessing spins per-
pendicular to it. Sk satisfies

 

@Sk
@t
� Pk
Ĵ0�SE�� � �k: (5)

This equation can be solved iteratively for any scattering.
To solve the equation for S?, on the other hand, one needs
to expand S? in the strength of the scattering potential
jUj2, as S? � S?0 � S?1 �O�jUj

4�. (It is easily shown
that the first term in the expansion must be zeroth order in
jUj2, while Sk starts at order �1.) The equations for these
contributions are
 

@S?0

@t
�
i
@

Hso; S?0� � �? � P?
Ĵ0�Sk��; (6a)

@S?1

@t
�
i
@

Hso; S?1� � P?
Ĵ0�S?0��: (6b)

It follows that if �? � P?
Ĵ0�Sk�� vanishes in Eq. (6a), as
it does for the linear Rashba model, then all the contribu-
tions to S? vanish. In general, the equation for S?0 is also
solved iteratively for any scattering, but a closed-form
solution for SE is not always possible. An enlightening
closed-form solution is, however, possible for short-range
impurities, where Ĵ0�SE� � �SE � �SE�=�p, with the bar
denoting averaging over directions in k space and �p �
@

3=�m�jUj2kD�2Vuc�, with D the dimensionality and Vuc
the unit cell volume. The series of equations of increasing
order in jUj2 give two geometric progressions that sum to
 

Sk � �k�p � Pk�1� �Pk�
�1 ��k�p; (7a)

S? � �
�?�p � P? �Sk
1��2�2

p=@
2 �

�� �?�p � P? �Sk� � ��p
2@�1��2�2

p=@
2�

:

(7b)

In the general case considered below the complex expres-
sions for SE, �k and �? will not be given explicitly.

Our analysis clarifies the relation between steady-state
spin currents and spin densities in electric fields. Since the
spin operator is even in k and the spin-current operator is
odd in k, it emerges, after evaluating Sk and S?, that the
right-hand side (RHS) of Eq. (7a) is responsible for steady-
state spin densities [5–7], while the second term on the
RHS of Eq. (7b) gives rise to spin currents [1–4]. [The first
term on the RHS of Eq. (7b) vanishes in both the weak and
the strong momentum-scattering limits.] We conclude that
spin densities arise from Sk, the distribution of conserved
spin while spin currents arise from S?, the distribution of
precessing spin. Thus nonequilibrium spin currents are due
to spin precession (as first demonstrated in [4]) while
nonequilibrium spin densities [5–7] are due to the absence
of spin precession. The physical picture for the latter

mechanism is as follows. Each spin on the Fermi surface
precesses about an effective field ��k� and the spin com-
ponent parallel to ��k� is preserved. In equilibrium the
average of the conserved components is zero, but when an
electric field is applied the Fermi surface is shifted and the
average of the conserved spin components may be nonzero.
This intuitive physical argument [6] explains why the
nonequilibrium spin density / ��1

p and requires scattering
to balance the drift of the Fermi surface. On the other hand,
spin currents contain only terms / �2n

p with n�0;1;2; . . . .
It can be seen from Eq. (7b) that there is only one

contribution to the spin current, which in the weak
momentum-scattering (intrinsic) limit is independent of
�p and in the strong momentum-scattering (extrinsic) limit
is / �2

p. It was also noted that, if the RHS of Eq. (6a)
vanishes, then S? vanishes to all orders. We conclude that,
if spin-orbit interactions exist only in the band structure,
the distinction between intrinsic and extrinsic spin contri-
butions to the spin current is not useful.

In calculations of spin currents J based on Green’s
functions formalisms, vertex corrections are important
[28–30]. The above analysis suggests that contributions
due to two processes are contained in vertex corrections.
Scattering renormalizes the driving term for SE to �s �

Ĵs�fE�, and mixes the conserved and precessing spin dis-
tributions, as in Eq. (6a). This implies that vertex correc-
tions to J contain the influence of a steady-state spin
density on J [40]. As this spin density occurs only in
gyrotropic materials [5], we expect vertex corrections to
spin currents to vanish in nongyrotropic materials.

Engel et al. [32] showed that, when band structure spin-
orbit interactions are negligible, spin currents arise from
skew scattering. A comparison of our results with those of
Ref. [32] shows that scattering can give rise to spin currents
of qualitatively different forms depending on whether spin-
orbit interactions are present in the band structure or not. A
general analysis of band structure spin-orbit interactions
and skew scattering on the same footing remains to be
undertaken.

For known cases, our theory agrees with previous work.
2D Hamiltonians with spin-orbit coupling linear in k give
zero spin current for any scalar scattering potential [30,41],
including short-range [20,28–31], and small-angle scatter-
ing [20,21,23]. For Hamiltonians characterized by one
Fourier component N [21] the spin current /N. In 3D
the correction to the spin current due to Ĵs�fE� vanishes
for the k3-Dresselhaus model and short-range impurities.
Our results also agree with previous calculations of spin
generation [6].

As a specific example, we investigate the spin-current
response tensor T in systems of low symmetry. A strong
justification for this choice is that experiment often studies
low-symmetry structures whereas theory is often done for
high-symmetry models. We concentrate thus on quantum
wells and, considering for definiteness a symmetric 150-Å
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wide GaAs well grown along [113]. The axes of the
coordinate system are x � 
33�2�, y � 
1�10� and z �

113�. Spin-orbit interactions are described by k-linear
and k3-Dresselhaus terms [42] and impurity scattering by
a screened Coulomb potential, with the Thomas-Fermi
wave vector k0 � 4kF at carrier density n � 1:6�
1011 cm�2. We do not consider skew scattering, which is
important when band structure spin-orbit interactions are
weak [11,32]. In units of e=�8��, we obtain Txxx � 0:398,
Txyy � 0:12, Tzyx � 0:172, and Tzxy � �0:414, which shows
that for realistic scattering in a system of low symmetry
many components of T are nonzero. At the boundary one
must study also the spin current according to the alternative
definition [14]. Previous work [14] has shown this to be of
the same order of magnitude as the conventional spin
current, with occasional sign differences. As our symmetry
analysis holds for both definitions of the spin current, we
expect results to conform to the pattern found above.

Taking the QWalong [113] considered above, an electric
field applied along x will produce a nonequilibrium spin
density, a spin-Hall current and a longitudinal spin current
composed of spin-x only. If the QW is joined to a material
in which no nonequilibrium spin density is generated, then
a Kerr rotation [3] or magnetic circular dichroism [43]
experiment will give a nonzero signal exclusively due to
the injected spin-x current.

In summary, we have shown that in systems with re-
duced symmetry spin currents are not restricted to the spin-
Hall effect, and that this fact can help one distinguish
experimentally between electrically induced spin densities
and spin currents. We have demonstrated in addition that
spin currents in an electric field are associated with spin
precession, whereas spin densities are associated with the
absence of spin precession.
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