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2CREST, Japan Science and Technology Agency (JST), AIST, 1-1-1, Higashi, Tsukuba 305-8562, Japan

3RRC ‘‘Kurchatov Institute,’’ 123182, Moscow, Russia
4CREST, Department of Applied Physics, The University of Tokyo, 7- 3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

(Received 20 June 2007; published 30 November 2007; corrected 20 February 2008)

We develop a novel self-consistent approach for studying the angle resolved photoemission spectra
(ARPES) of a hole in the t-J Holstein model giving perfect agreement with numerically exact
diagrammatic Monte Carlo (DMC) data at zero temperature for all regimes of electron-phonon coupling.
Generalizing the approach to finite temperatures, we find that the anomalous temperature dependence of
the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic
fluctuations and strong electron-phonon interaction.
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The parent compounds of the high temperature super-
conductors, i.e., the undoped cuprates, turned out to be an
ideal arena for studying the dynamical properties of the
single polaron in an antiferromagnetic background [1]. The
polaron formation is expected from the ionic nature of the
parent compounds and the resulting strong electron-
phonon interaction (EPI), together with the strong electron
correlation as evidenced by the realized Mott insulating
state. Therefore, the interplay between the magnetism and
EPI is a key to resolve the quantum dynamics of the doped
carrier into the cuprates.

This problem has been theoretically studied [2,3] in
terms of a hole in the t-J model coupled by short-range
Holstein interaction to optical phonons (t-J Holstein
model). The theoretical predictions were verified experi-
mentally [4,5], and it was shown that the real quasiparticle
peak has only a tiny weight at lower binding energy
compared with the involving multiphonon excitations
Franck-Condon peak. The former one can hardly be ob-
served in ARPES experiments because of tiny spectral
weight while the latter broad one reproduces the dispersion
of the pure t-J model.

It has been shown [2,6,7] that the polaronic effect is
enhanced by the entanglement of the interactions of a hole
with magnons and phonons, and this interplay is the unique
feature of the cuprates. Indeed, the EPI alone is absolutely
unable to explain the temperature dependence of ARPES
because experimentally found temperature dependence of
ARPES is considerably larger than that predicted by polar-
onic theory [8]. A magnetic subsystem alone is also not a
suitable candidate [9] since the typical energy scale of
magnons 2J � 0:2 eV is even larger than that of phonons
!0 � 0:04 eV. Given such a desperate situation, there is a
temptation to explain the temperature driven peak broad-
ening by the destruction of the antiferromagnetic back-
ground due to the quantum or thermal fluctuations as
approaching the Neél temperature. Recent studies revealed
one more puzzle questioning the polaronic scenario: the

temperature dependence of the linewidth is linear in the
range 400 K< T < 200 K [5] and extrapolates to zero
linewidth at zero temperature [2,3,6]. From the theoretical
point of view, it is a challenge to study the temperature
dependence of the Lehman spectral function (LSF) of the
single hole in the t-J Holstein model, which corresponds to
the ARPES experiment in the undoped system [1], in the
intermediate or strong coupling regime in a reliable way,
which has never been achieved to the best of our
knowledge.

In the present Letter, we solve the t-J Holstein model by
a novel Hybrid Dynamical Momentum Average (HDMA)
self-consistent method uniting the advantages of
Momentum Average (MA) approach [10,11], keeping the
essential information on the magnon dispersion, and
Dynamical Mean Field (DMF) technique, properly taking
into account strong but essentially local coupling to the
lattice. Comparing results of the HDMA method with exact
data obtained by diagrammatic Monte Carlo (DMC) ap-
proach, we show that the HDMA method provides accurate
results for t-J Holstein model where quasiparticle weakly
interacts with delocalized magnons and is strongly coupled
to local vibrations. Making a generalization of HDMA
technique to finite temperatures, we show that the basic
features of anomalous temperature dependence of ARPES
in undoped cuprates can be explained by mutual interplay
of magnetic and lattice systems in the t-J Holstein model.

The Hamiltonian of the t-J Holstein model in the spin-
wave approximation [12–14] reads

 H � !0

X
k

bykbk � g!0

X
k;q

�hykhk�qbq � H:c:�

�
X
k

!ka
y
kak �

X
k;q

�Mk;qh
y
khk�qaq � H:c:� (1)

where hyk , ayk , and byk are the creation operators of a hole, a
magnon, and a phonon of momentum k, respectively. The
hole motion is associated with the creation and annihilation
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of magnons of energy !k � 2J
���������������
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N
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���������������������������������
�1� �q�=�2�q�

q
, vq �

�sgn��q�
��������������������������������
�1� �q�=�2�q�

q
, �q � !q=2J, and N is the

number of lattice sites. The short-range interaction be-
tween the hole and local distortions due to dispersionless
optical vibrations with frequency !0 is described by the
coupling constant g. For the following, we use the corre-
sponding experiment values J=t � 0:3, !0=t � 0:1 [1], to
measure all energies in units of t and assume Planck and
Boltzmann constants equal to unity.

The generic features of the model (1), causing difficul-
ties to semianalytic approaches, is the intrinsic interplay
between interaction of a hole with magnons, reducing the
spectral weight of its quasiparticle as well as reducing its
bandwidth, and coupling to local phonons backing the self-
trapping of the quasiparticle [15]. Brute force disentan-
gling of these two contributions is impossible because the
energy scales of the two processes are of the same order
[15]. The only attempts which were successful so far, in
quantitative description of the spectral properties of the
model (1) at zero temperature, were based on numerically
involved methods, such as exact diagonalization [15–17]
or DMC [2] techniques. However, the results of the former
method are limited to small lattices while the latter one,
working in the thermodynamic limit, requires extremely
extensive numerics efforts at finite temperature due to the
‘‘ill posed’’ nature of the analytic continuation [18].

In spite of the same energy scales involved into the hole-
magnon and hole-phonon couplings, these two interactions
are profoundly different since the coupling to magnons is
essentially momentum dependent and always weak
whereas that to phonons is local and can be strong.
Indeed, since the spin S � 1=2 cannot flip more than one
time, each site can not possess more than one magnon [19],
and, thus, the weak-coupling Self-Consistent Born
Approximation (SCBA) is satisfactory for small values of
J=t [6,20]. To the contrary, SCBA fails for EPI even in the
intermediate coupling limit [2]. Therefore, to cope with the
t-J Holstein problem, it is enough to treat the essential
momentum dependent coupling to magnons within the
SCBA and to sum vibrational variables nonperturbatively,
at least in some local approximation. Nonperturbative local
approaches, valid at any coupling strength and neglecting
the k-dependence in the self-energy �h-ph�k; !�, are DMF
technique [21] and recently developed MA method
[10,11]. They provide explicit form for the hole self-energy
due to hole-phonon interaction in terms of a continued
fraction

 �h-ph���!�� �
�g!0�

2��!�!0�

1� 2�g!0�
2��!�!0���!�2!0�

1�
3�g!0�

2��!�2!0���!�3!0�
1�...

: (2)

The difference in DMF and MA lies in the definition of

��!� which is a function that has to be fixed by a self-
consistent procedure in the DMF approach while it is
identified with the k-average of the bare Green’s function
in the MA scheme. Obviously, the MA scheme is prefer-
able when one is interested in properties of 2D model (1)
with highly anisotropic coupling Mk;q.

Summarizing the above considerations, a reasonable
self-consistent procedure expresses the total self-energy
of the hole as the sum of the self-energies caused by
magnetic and phonon subsystems

 �tJH�k; !� � �SCBA
h-mag�k; !� � �h-ph��tJH�!��: (3)

Weak and highly anisotropic interaction with magnons is
taken into account in the SCBA

 �SCBA
h-mag�k; !� �

X
q

M2
k;q

!�!q � �tJH�k� q; !�!q� � i"
;

(4)

and the ��!�-function for hole-phonon self-energy

 �tJH�!� �
1

N

X
k

1

!� �SCBA
h-mag�k; !� � i"

(5)

is expressed in terms of momentum average of ‘‘bare’’
Green function whose k-dependence is determined by the
hole-magnon self-energy (3) in the SCBA. The Eqs. (2)–
(5) constitute the self-consistent set of the HDMA
approach.

The set of Eqs. (2)–(5) has the same structure as ob-
tained in the DMF formulation of the t-J Holstein model
[22,23], with the important exception that the
��!�-function is determined not from the purely local
self-consistent DMF condition but defined through the
momentum average [10,11] of the bare Green function
containing the anisotropic self-energy of two dimensional
t-Jmodel. Within the framework of DMF approach, the t-J
Holstein model is indistinguishable from the t-Jz model
where the hole coherent motion is suppressed [22]. To the
contrary, the HDMA approach preserves coherent motion
of the hole. The ground state energy, EGS, and its spectral
weight, ZGS � �1� @�tJH=@!j!�EGS

��1, are in good
agreement with the data of numerically exact DMC ap-
proach [2], and the crossover to the strong coupling limit at
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FIG. 1. The ground state energy (EGS) and the spectral weight
(zGS) as a function of the EPI strength � � g2!0=4t in the DMC
approach (line) and in the HDMA method (points). The error
bars of the DMC data are less than the point size.
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� 	 0:4 is perfectly reproduced (see Fig. 1). Indeed,
HDMA is particularly successful in the strong coupling
limit where the Franck-Condon peak inherits the disper-
sion of the hole interacting only with magnons [2] and,
hence, the momentum dependence of the hole-magnon
self-energy (3) is the only relevant k-dependence.

For further check of validity of the HDMA scheme, we
compare the spectral function calculated on a lattice 64

64 with that obtained by the approximation-free DMC
technique for pure t-J model (� � 0) and t-J Holstein
model in the weak (� � 0:1), intermediate (� � 0:289),
and strong (� � 0:462) coupling regimes (Fig. 2). The very
good agreement of the overall shapes is observed for all
coupling regimes, and mismatch of fine details can be
attributed to finite size effects of 64
 64 lattice [24] and
the ‘‘local’’ approximation used in the present approach
[Eq. (2)] that, at strong coupling, gives the typical oscil-
lations with the period of phonon energy. Apart from these
details, our approach is reliable in all coupling regimes and
gives the spectral function with a computational effort
much less than by the DMC approach.

An important advantage of our scheme is that its gen-
eralization to finite temperature is straightforward.
Performing analytical continuation of �SCBA

h-mag�k; !� to
Matsubara formalism, one gets [25,26]

 �SCBA
h-mag�k!� �

X
q

M2
k;q�1�nb�!q��

!�!q��tJH�k� q;!�!q�� i"

�
X
q

M2
k�q;q�nb�!q��

!�!q��tJH�k� q;!�!q�� i"
;

(6)

where nb�!� is the Bose-Einstein factor. For the general-
ization of Eq. (2), we followed in the following way. Since
the ��!�-function in Eq. (4) is reduced to a local momen-

tum independent value, the temperature dependence of the
hole self-energy can be included as follows [27,28]

 �h-ph���!�� � ��1�!� �
X1

n�0

�1� x�xn

��1�!� � An�!� � Bn�!�

(7)

where x � exp���!0� and

 An�!� �
n�g!0�

2��!�!0�

1� �n�1��g!0�
2��!�!0���!�2!0�

1�
�n�2��g!0�

2��!�2!0���!�3!0�
1�...

Bn�!� �
�n� 1��g!0�

2��!�!0�

1� �n�2��g!0�
2��!�!0���!�2!0�

1�
�n�3��g!0�

2��!�2!0���!�3!0�
1�...

:

The Eqs. (3) and (5)–(7) provide a set of self-consistent
equations that can be solved iteratively typically within 40
iterations. We verified the relevance of the relation (7) for
our scheme checking the sum rules [10,11] and found that
the first three sum rules for the LSF are satisfied at any
temperature and EPI with high accuracy. Therefore, our
results for peak energy and linewidth, determined mainly
by the first and second sum rule, do not lose accuracy from
the approximations made to obtain the HDMA self-
consistent scheme.

The temperature dependence of LSF at k � ��=2; �=2�
at different values of EPI is shown in Fig. 3. The trends for
peak position and linewidth are in agreement with experi-
mental data [5,8,29,30]. With the increase of temperature,
the binding energy [31] and width of the main broad peak
increase while their intensity decreases. It is seen that all
temperature driven effects are more pronounced in the t-J
Holstein model than in the t-J model supporting the state-
ment [2,6] that the entanglement of the magnetic and
vibrational fluctuations is essential for cuprates and crucial
for description of anomalously enhanced temperature
driven effects in undoped compounds [8].

The temperature dependence of the peak width esti-
mated through a Gaussian fitting is shown in Fig. 4. It is
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FIG. 2 (color online). The LSF A��=2; �=2� for different EPI
� in the HDMA (solid line) and DMC (dotted line) approaches.
Vertical line in the panel with � � 0:462 indicates the position of
the ground state quasiparticle peak. The error bar of the ground
state DMC energies is less than 10�4.

− 2.9 − 2.7 − 2.5 − 2.3 − 2.1

0.5
1

1.5
2

2.5
3

β =

β =

β =

β =

β =

β =

β =

∞

β = ∞

β =
β =

β =

∞

β = ∞

15

10

0.462

− 3.5 − 3.1 − 2.7 − 2.3

0.1

0.3

0.5

0.7

15

10

1.0

− 2.9 − 2.7 − 2.5 − 2.3 − 2.1
0.5

3

5.5

8

15

10

=0

− 2.9 − 2.7 − 2.5 − 2.3 − 2.1
0.5

2.5

4.5

6.5

15
10

0.289=

= =

FIG. 3 (color online). The LSF (A��=2; �=2�) for different EPI
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remarkable that in the strong coupling regime of the EPI,
the peak width is almost constant up to T ’ !0=2 � 200 K
and then, for T ^ !0=2, demonstrates linear dependence
which, in according with experiment, can be naively ex-
trapolated to almost zero value at zero temperature. Note,
the temperature dependence is strongly enhanced in the
strong coupling limit � > 0:4 providing, in contrast with
purely polaronic or purely magnetic models, correct order
of magnitude of the effect, and even showing a good
semiquantitative agreement with experiment [5,8,29,30].
For � � 0:462, the peak width, in quantitative agreement
with experiment [5], doubles in the range from 200 to
400 K though the absolute value of the peak width is a
factor of 2 below the experimental values. On the other
hand, the absolute value of the linewidth fits the experi-
ment for � � 1, but the enhancement of the width is a
factor of 1.5 below that found experimentally [5]. The
above discrepancies can be attributed to the fact that the
longer range hoppings of the more realistic tt0t00-J model
and virtual charge fluctuations due to Hubbard corrections
[32] are missing in the present approach, or as well to the
fact that, in realistic systems, the holes are coupled to
several phonon modes through the EPI of different strength
[33].

In conclusion, by using a new hybrid dynamic momen-
tum average approach to the calculation of a hole LSF in
the t-J Holstein model, we have shown that the origin of
the anomalously large temperature dependence of the
ARPES in the undoped parent compound of high tempera-
ture superconductors originates from the constructive in-
terplay between magnetic and strong electron-phonon
interactions.
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ture, T, for the t-J model (� � 0) and in strong EPI limit (� �
0:462 and � � 1). The temperature T is defined in units of
Kelvin assuming t � 0:4 eV.
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