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We study the dynamics of a flexible foil immersed in a fluid and moving close to a rigid wall.
Lubrication theory allows us to derive equations of motion for the foil and thus examine the passive
settling and the active swimming of a foil. This also allows us to partly answer the long-standing question
in cartoon physics—can carpets fly? Our analysis suggests a region in parameter space where one may
realize this dream and move the virtual towards reality.
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The myth of the flying carpet is ubiquitous in many
cultures, conjuring up images of magical and mystical
travels. More recently, animators have recycled these im-
ages in cartoons, and perhaps the day is not far off when
engineers will provide us with a virtual ride on one. From a
physical perspective, we might ask if a flying carpet is
possible and, if so, under what conditions might it operate.
Indeed, the runaway transparency, that bane of seminar
speakers which flexes as it flies away, provides an everyday
example of this. In the natural world, there are many
analogs of a flying carpet—as seen in rays and skates
that glide effortlessly through the depths of the ocean,
often just above the sea floor. Motivated by this last ob-
servation in particular, we consider the limit when a sub-
merged slender active elastic foil is moving close to a wall,
shown schematically in Fig. 1. This problem was studied in
the context of swimming with a prescribed gait in an
infinite Newtonian fluid [1]. More recent studies have
focused on prescribing the kinematics of the foil and solv-
ing for the optimal motion of the sheet in Newtonian and
non-Newtonian fluids [2– 4]. In this Letter, we comple-
ment these studies by determining the shape and dynamics
of a fluid-lubricated flexible foil [5–7] as it slides and
settles onto a wall, and further consider the swimming of
such a sheet when driven by actively generated internal
torques associated with muscles or their artificial analogs.

We focus on cylindrical deformations for simplicity,
although we note that skates, rays, and many marine or-
ganisms use more complex deformation patterns. Flow in
the thin gap is adequately described by lubrication theory
[8] so that we may write

 � @xp��@zzu � 0; @zp � 0; @xu� @zw � 0;

(1)

where p is the pressure, � is the fluid viscosity, u�x; z� is
the horizontal velocity, and w�x; z� is the vertical velocity
of the fluid. If the sheet moves at a velocity U in the x
direction at a distance h�x� from the wall, the correspond-
ing boundary conditions are u�x; 0� � 0, u�x; h� � U,

w�x; 0� � 0, w�x; h� � @th�U@xh so that integrating (1)
yields

 u�x; z� �
@xp
2�
�z2 � zh� �U

z
h
; (2)
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U@xh� @x
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@xp
12�
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For a sheet of thickness �, density �, Young’s modulus E
(bending stiffness D� E�3) with an active distributed
torque per unit length f�x; t� (due to muscular activity or
artificial actuators), immersed in a fluid of density �� ��,
horizontal and vertical momentum balance yields

 ��@tU � �
�
�
U
h
�

1

2
h@xp� p@xh

�
� @xT; (4)

 0 � ���g�� @xx�f�D@xxh� � p; (5)

FIG. 1. A schematic of a fluid-lubricated flexible foil flying
above the floor (z � 0). Here, we also show the various forces
and torques on an infinitesimal element of the sheet, with T�x; t�
the tension, M�x; t� the torque, N�x; t� the shear force, p the
pressure, and �xz the fluid shear stress. Torque balance implies
that @xM � N, while normal force balance yields @xN � p�
��g�, which together yield @xxM � p���g�.
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where the second equation was derived in [9] in a slightly
different context. Here, the total torque at any cross sec-
tion, D@xxh� f, is the sum of the passive elastic torque
M � D@xxh and the active torque f, while T�x� is the
tension, as defined in Fig. 1. We have neglected the inertia
of the sheet in the vertical direction, an assumption that is
valid when �htt�� ��g. Thus for motion with character-
istic time scale �� L=U, the sheet must be sufficiently
short and close to the wall to satisfy the inequality L2 �
��
� gU

2=h. Furthermore, we have also neglected tension in
the vertical momentum balance equation, an assumption
that is valid when the sheet is curved only slightly. We now
make the system dimensionless by using the definitions

x � Lx0, t � 12�L2

h2
0��g� t

0, h � h0h0, p � ���gp0, U �
��g�h2

0

6�L U0 for the scaled variables x0, t0, h0, p0, U0.
Omitting primes, we write the complete set of equations
for a freely moving foil, which are the scaled forms of (3),
an integrated form of (4) and (5):

 @th�U@xh� @x�h3@xp� � 0; (6)

 W@tU � �
Z 1

0

�
U
h
� 3p@xh

�
dx; (7)

 p � B@xxxxh� 1� @xxf: (8)

Here W �
�2h3

0���g
12�2L2 measures the ratio of horizontal solid

inertia to viscous drag, and B � hE�2

12L4��g
measures the ratio

of the passive bending elasticity and gravity. Global force
and torque balance which result from integrating (8) and its
first moment imply that

 

Z 1

0
pdx � 1;

Z 1

0
p�x� 1=2�dx � 0: (9)

To complete the formulation of the problem, we need some
boundary conditions. Since the ends of the sheet are free,
they must have no forces or torques, and the pressure must
equal the ambient pressure, so that

 �f� B@xxh�j0;1 � �@xf� B@xxxh�j0;1 � pj0;1 � 0: (10)

We are now ready to address a variety of different problems
of increasing complexity. Here we limit ourselves to (i) the
settling of a stiff or soft passive sheet, i.e., when f � 0, and
(ii) the swimming of an active stiff or soft sheet f � 0.

For a relatively stiff plate falling due to gravity, the
shape of the sheet is well approximated by

 h�x; t� � h0�t� � �x� 1=2���t�; (11)

where h0�t� is the average height of the sheet and ��t� �
L�=h0 is its dimensionless slope. Substituting this ansatz
into Eqs. (6) and (9) yields a set of ordinary differential
equations which we can easily integrate numerically. In
Fig. 2(a), we show that for a tilted plate starting out at rest,

the slope ��t� rapidly decreases to zero as the sheet settles
down almost vertically. To understand this, we substitute
(11) into (6)–(8) which, to leading order in �, yields (at
leading order)
 

@th0 � �12h3
0 �U�; W@tU � �

U
h0
� �

@th0

4h3
0

;

@t� � 6�
@th0
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: (12)

The solution of (12) for an initially stationary plate, i.e.,
with U�0� � 0 is h0 � �

1
h0�0�

2 � 24t��1=2. Then, it follows

that �� h6 � t�3 ! 0; i.e., the plate aligns itself rapidly
with the substrate. This is because regions closer to the
substrate are subject to higher pressures which force the
plate to rotate and align with the substrate. For flexible
foils, a similar scenario is observed; the plate becomes
nearly horizontal, and the pressure beneath it is almost
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FIG. 2. Falling flexible sheet: (a) Trajectory of a rigid plate
obtained by numerical integration of Eqs. (12) for M � 1 with
initial conditions h�0� � 2, U�0� � 3, and ��0� � 0:6. The plate
quickly aligns with the substrate before slowing down as it falls;
different lines correspond to snapshots separated by equal time
intervals. (b) Scaled sliding distance D � �Ds=��h�0�U�0�
(dotted line) as a function of the nondimensional flexibility B.
For a flexible plate Ds � B

1=4 (solid line); when B�O�1� the
sliding distance approaches the value given by Ds �U�0���
��h�0�U�0�=� (see text). Initial conditions are h�x; 0� � 1 and
U�0� � 0:1.
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constant except in the neighborhood of boundary layers
near the two edges where elastic and viscous effects
compete.

When the initial velocity of the plate is nonzero, it slides
for a while as it settles under its own weight before coming
to rest. The characteristic sliding distance that the plate can
travel is obtained by balancing the change in the initial
momentum with the viscous drag, embodied in (4) and (7),
and yields the travel time �� ��h�0�

� so that the sliding
distance for a rigid plate Ds �U�0��� ��h�0�U�0�=�.
A more careful computation using (12) yields
�Ds=�h�0��U�0� � 0:379 for h�x; 0� � W � 1. When
the foil is not rigid, we use a simple finite difference
scheme to determine the dependence of the sliding distance
Ds on the scaled foil flexibility B by solving (6)–(8)
numerically. The results shown in Fig. 2 indicate that stiffer
plates travel farther than softer plates. This is because
flexibility causes parts of the foil to bend up close to the
wall, which slows it down enormously. In this regime, the
size of the boundary layer lB over which bending effects
are important are given by (8), which yields Bh�0�=l4B � 1
so that lB � �Bh�0��1=4. This suggests the following scaling
for the sliding distance Ds �

��h�0�U�0�
� lB, consistent with

our numerical results, shown in Fig. 2.
Having understood the case of a passive sheet falling and

sliding under its own weight, we now address the dynamics
of an active flexible sheet, i.e., the autonomous swimming
sheet and its natural counterparts. We denote the time-
averaged power delivered by the active torque as P , while
the averaged viscous power dissipated in the fluid as S,
where

 P �
1

T

Z T

0

Z L

0
�@xxf��@th�dxdt;

 2S �
�
T

Z T

0

Z L

0

Z h

0
�@zu�2dzdxdt � Ss � Su;

where Ss �
R
L
0 �U

2=h�dx and Su �
R

1
0
�@xp�2

12� h3dx are, re-
spectively, the steady power required to drag a plate at a
distance h from a wall (in the absence of gravity), and the
unsteady power required to generate lift or thrust via un-
steady motions. Since the functional space spanned by the
active torque f�x; t� is infinite, we study the problem using
an inverse method by imposing the shape of the sheet and
using this to deduce the form of f. We assume that the
shape of the sheet is a generalization of (11)

 h�t; x� � h0�t� � ��t�x� A sin�!t� qx�; (13)

where the third term represents the actively generated
oscillatory motion of amplitude A, frequency !, and
wave number q.

Equations (6)–(8) together with the boundary conditions
(10) constitute a fourth order system for the functions
f�x; t�, p�x; t� and the parameters h0�t�, ��t�. For a given

ansatz (13) we use a Newton-Raphson method to deter-
mine h0 and � by solving (6) and (8) subject to the
boundary conditions (10), and to determine U by using
(7). In Fig. 3, we show the results of our numerical experi-
ments for a typical parameter set corresponding to a per-
fectly flexible sheet with B � 0; after a short transient, the
sheet reaches a periodic steady state and moves with an
average velocity U at an average height h0 with an average
tilt �.

In Fig. 4(a) we show the average velocity and power [9]
as a function of the wave amplitude A; the velocity in-
creases monotonically as A is increased, but the power
shows a maximum for some value of the amplitude.
Large velocities require large amplitudes of oscillation.
However, since the dissipation is dominated by regions
of small h, we see a crossover in the power required which
actually decreases beyond a critical amplitude (for a given
frequency), since the sheet is farther away on average. In
Fig. 4(b), we show that as the forcing frequency ! is
changed, the velocity and the driving power increase
monotonically; one might expect a nonmonotonic effect
due to plate inertia in the vertical direction, but we have
neglected this effect here. We also varied the forcing wave
number q to study its effect on the velocity and power but
find that there is essentially no dependence of the velocity
on the wave number, while the power increases monotoni-
cally. This is consistent with the fact that the dominant
contribution to swimming thrust arises from long wave-
length modes that can sweep relatively large volumes of
liquid; short wavelength modes do not lead to coherent
motion, but will help to support the sheet. The relative
independence of the velocity on the stiffness is somewhat
surprising, but is consistent with the fact that the dominant
force balance in the normal direction is between gravity
and hydrodynamic pressure. Finally, we investigate the
role of flexibility: we find that the velocity remains almost
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FIG. 3. Motion of an active sheet undergoing periodic sinusoi-
dal deformations with scaled amplitude A � 0:1, wave number
q � 25, and frequency ! � 1 obtained by solving (6)–(10) with
the ansatz (13) numerically. We see that the velocity U�t� (thick
gray line), height h�t� (thick black line) and tilt ��t� (thin line)
shows an initial transient followed by an oscillating steady state.
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constant over a range of B, as shown in Fig. 4(c), but the
power required is nonmonotonic as a function of the stiff-
ness; a stiff plate can displace fluid efficiently, while a
flexible plate requires little energy to deform it.

To understand these trends, we consider times large
compared to those associated with the oscillations of the
sheet. Then the fluid pressure must just balance the weight
of the sheet, so that p���g�. Similarly, for a sheet
moving at constant velocity, the balance of horizontal
forces yields the relation �U=h0 � p�. Finally, continu-
ity coupled with horizontal force balance in the fluid yields
�U�� ph3

0=L
2. Complementing these relations with the

kinematic condition !A=q�U�L, which states that the
fluid flow induced by the traveling waves must balance that
induced by the steady movement of the sheet, yields the
following scaling relations:

 h0�

�
A!
q

�L
��g�

�
1=3
; U�

�
A!
q

�
2=3
�
��g�
�L

�
1=3
; (14)

and �� h0=L. Since we expect only the long wavelength
modes to generate movement, we expect that q� 1=L, so
that U� �A!�2=3���g�L� �1=3, qualitatively consistent with
the numerical results shown in Figs. 4(a) and 4(b). We see
that, to maintain a fast moving sheet, we need a large
amplitude and frequency with deformation on scales com-
parable to the length of the sheet. This is consistent with
our developed intuition that the lubrication induced pres-
sure balances the weight of the sheet, while the fluid
displaced by the traveling waves propels the sheet.

So, can a transparency or a carpet fly in air? For a 10 cm l
ong sheet of thickness 0.1 mm, a forcing frequency !�
10 Hz, an amplitude of oscillation of order A� 250 �m,

we find that h0 � 10�3 m, U� 0:3 m 	 s�1, and the ac-
tive torque fmax � ��g�=L2 � 10�1 N 	m, all of which
are within the realm of possibilities in nature and in tech-
nology. Making a heavy carpet fly would, of course, re-
quire a much more powerful engine, and our computa-
tions and scaling laws suggest it will remain in the magical,
mystical, and virtual realm as it has existed for millenia. In
air, jet-propelled carpets are quite a different story alto-
gether. In water, where the density contrast between a
carpet and water is much less, swimming carpets are easily
plausible. Indeed, the common skate or ray shows us
nature’s own swimming carpet. To move beyond our quan-
titative analysis of these multiparameter problems now
requires a combination of experiments with real biomi-
metic devices and observations of real organisms.

[1] G. I. Taylor, Proc. R. Soc. A 209, 447 (1951).
[2] E. Lauga, Phys. Rev. E75, 041916 (2007).
[3] N. Balmforth, B. Chan, and A. Hosoi, Phys. Fluids 17,

113101 (2005).
[4] E. Lauga, Phys. Fluids 19, 083104 (2007).
[5] E. O. Tuck and M. Bentwich, J. Fluid Mech. 135, 51

(1983).
[6] W. Gross, L. Matsch, V. Castelli, A. Eshel, J. Vohr,

and M. Wildmann, Fluid Film Lubrication (Wiley-
Interscience, New York, 1980).

[7] R. C. Benson, J. Tribol. 117, 47 (1995).
[8] G. K. Batchelor, An Introduction to Fluid Dynamics

(Cambridge University Press, Cambridge, UK, 1967).
[9] A. Hosoi and L. Mahadevan, Phys. Rev. Lett. 93, 137802

(2004).

0.020.01 0.1 0.2

0.002

0.005

0.02

0.01

0.05

0.002

(a)

A
1 2 5 10 20 50

0.01

0.02

0.03

0.05 (b)

0.002

0.01

0.02

0.03
0.04

10− 3 10− 110− 2
B

(c)

FIG. 4. Average velocity U and power P as a function of (a) amplitude of oscillation A, (b) frequency of oscillation !, and (c) the
bending stiffness of the sheet B. The dependence on the wave number q is very weak (data not shown). The parameters used were: for
(a) q � 25, ! � 1, B � 0 (black), and B � 0:03 (gray and dashed), the thin solid line is given by U� A2=3; for (b) A � 0:01 and
q � 25, B � 0, the thin solid line is given by U�!2=3; for (c) A � 0:1, q � 25, ! � 1. We also show the power [8] P required for
propulsion, and note P is a nonmonotonic function of the amplitude A and the bending stiffness B, but increases monotonically with
frequency !. The average speed is consistent with the scaling law U� �!A�2=3 as derived in the text [see (14)].
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