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We experimentally study dispersive shock waves in nonlinear waveguide arrays. In contrast with gap
solitons, the nonlinearity here pushes the propagation constant further into the transmission bands,
facilitating Bloch mode coupling and energy transport. We directly observe this coupling, both within
and between bands, by recording intensity in position space and power spectra in momentum space.
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Dispersive shock waves are a fundamental type of non-
linear wave and appear in many hydrodynamic settings,
including fluids, superfluids, plasma, and optics [1]. Their
basic existence conditions are a dispersive medium with an
effective pressure (e.g., repulsive interactions or defocus-
ing nonlinearity) and a fluid or intensity background that
can support undamped waves. In the ensuing dynamics, the
initial wave profile steepens, with different modal compo-
nents coupling to the background and walking off from
each other. The result is an expanding front characterized
by oscillations (rather than the monotonically-decreasing
front that characterizes dissipative shock waves). Even
from a discrete, or atomistic, viewpoint, such oscillatory
fronts arise whenever (nonlinear) elastic motion dominates
viscous or plastic flows. Examples in this case include
nonlinear mass-spring systems [2–4], molecular [5] and
granular [6] media, bubbly fluids [7], and dusty plasmas
[8]. To date, however, these discretized studies have relied
on a tight-binding approach, which minimized the unique
properties of the underlying Floquet-Bloch mode structure
and ignored coupling between transmission bands. Here,
we consider the photonic case experimentally by observing
dispersive shock waves in a nonlinear waveguide array. We
show both fundamental and higher-band lattice shocks and
demonstrate explicitly enhanced energy transport due to
multimode coupling.

The waveguide system studied here is well-described by
the nonlinear Schrödinger equation
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where  is the slowly-varying amplitude of the optical
field, k0 � 2�n0=� is the wave number in the material,
V�x� is a periodic potential, and �n is the nonlinear index
change induced by the light intensity. For a medium with a
Kerr response, for which most theory is done, �n �
n2k0j j2=n0, where n2 measures the strength of the non-
linearity (n2 < 0 for defocusing). For the experiments, a
�2� 5� 10� mm SBN:75 (Sr0:75Ba0:25Nb2O6) crystal is
used. In this case, the photorefractive nonlinearity �n �
��1=2�n3

0r33Eapp
�I=�1� �I�, where n0 � 2:3 is the base in-

dex of refraction, r33 � 1340 pm=V is the appropriate

electro-optic coefficient with respect to the applied field
Eapp and the crystalline axes, and the relative intensity �I is
the input intensity j j2 measured relative to a background
(dark current) intensity [9,10]. A self-defocusing non-
linearity is created by applying a voltage bias of �125 V
across the crystalline c-axis and taking advantage of the
photorefractive screening effect. In most cases, the use of
defocusing nonlinearity minimizes the difference between
saturable and Kerr systems [11]. For example, results from
recent homogeneous shock experiments, using a photore-
fractive setup identical to the one considered here, matched
Kerr predictions exactly [1].

The (super)fluid interpretation of the dynamics comes
from applying the Madelung transformation  �x; z� ���������������
��x; z�

p
exp�iS�x; z�� to Eq. (1), where � � j j2 is the

intensity and S is the coherent phase of the wave function
[12]. Scaling �x; z� ! k0�x; z� then gives two Euler-like
equations for the optical ‘‘fluid’’:
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where v � r?S is the ‘‘fluid’’ velocity. Note that this
definition is consistent with the eikonal intuition of the
wave front normal giving the direction of energy transport,
though care must be taken comparing Bloch vs Fourier
momentum k when propagating in an array. Equation (2)
states that intensity is conserved while Eq. (3) states that
optical flow arises from three effective pressures: one from
the repulsive (defocusing) nonlinearity, one from the ex-
ternal (lattice) potential, and one from diffraction. The left-
hand side of Eq. (3) is a convective derivative, implying
that an initial velocity (phase) profile will self-steepen
as it propagates. As the wave breaks, a shock is formed.
However, there is no dissipation in the system, so the wave
front does not have the sharp, nearly-discontinuous profile
common in viscous fluids. Instead, the velocity gradient is
regularized by modal dispersion, creating a front that is
characterized by oscillations (phase interference). These
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dispersive shocks are typical of inertial fluids and collision-
less plasma described by the Korteweg–de Vries equation
[13], as suggested by the triple derivative of the diffraction
term, and of superfluids described by Eq. (1). A good
comparison between dispersive and dissipative shock
waves can be found in Ref. [14].

The experimental setup is shown in Fig. 1. It consists of
three basic parts: (1) an ordinarily-polarized pair of plane
waves to optically-induce a lattice structure [15,16], (2) an
extraordinarily-polarized hump-on-background profile as
input [1], and (3) an imaging system to observe the light
exiting the crystal. The two-stage input, formed by split-
ting 532 nm laser light using a Mach-Zehnder interferome-
ter, takes advantage of the optical anisotropy of the SBN
crystal: the 1D array of waveguides stays fixed during
propagation, while the shock beam experiences both the
fixed periodic potential and a self-defocusing nonlinearity.
At the exit face of the crystal, the output is imaged into two
CCD cameras, one for the direct (near-field) intensity in
position (x) space and one for the Fourier (far-field) inten-
sity in momentum (k) space.

Figure 2 shows the linear transmission spectrum and
underlying Floquet-Bloch modes of the waveguide array.
As is well-known, the spectrum consists of bands of al-
lowed propagation separated by forbidden gaps, the ge-
ometry of which characterizes the diffraction/dispersion
relation � � kz�kx�. Momentum regions with concave cur-
vature (e.g., the odd-numbered modes in Fig. 2) experience

normal diffraction, in which the wave front diverges while
propagating, while regions with convex curvature experi-
ence anomalous diffraction [17]. These two regions re-
spond differently to a given nonlinearity, with diffraction
either enhanced or suppressed depending on the relative
sign of the curvature. For example, lattice solitons are
formed when nonlinearity exactly counteracts diffraction,
e.g., self-focusing nonlinearity for modes 1 [18] and 3 [19]
and self-defocusing nonlinearity for mode 2 [16] in Fig. 2.
With nonlinearity present, the propagation constant no
longer lies on the linear transmission curves; in the soliton
cases, it is pushed into the gap, localizing the wave in the
self-induced defect and isolating it from the linear modes
of the array [11]. Here, we consider the opposite regime in
which the propagation constant is driven farther into the
transmission band, facilitating the nonlinear coupling of
modes.

Experimental shock waves, along with numerical simu-
lations, are shown in Fig. 3. For reference, a dispersive
shock wave in the homogeneous crystal (no induced array)
is shown in Fig. 3(a). The input, not shown, consists of a
Gaussian beam superimposed on a plane wave, with an
intensity ratio of 10:1. As the beam is defocused, it runs
into the surrounding background, creating a shock wave
with an oscillating front. Dynamically, the high-intensity
part acquires a nonlinear phase that the low-intensity back-
ground does not; when the two regions overlap, the phase
difference causes an interference pattern. Mathematically,
the front can be described in terms of a Jacobi elliptic
function [20]. The inner part of the front consists of a series
of dark (gray) solitons, while the outer part consists of
linear, soundlike oscillations about the background. More
details about such homogeneous shock waves can be found
in Ref. [1].

Figure 3(c) shows the output of the same hump-on-
background profile launched into a waveguide array with
period D � 30 �m. In this case, the intensity ratio of
hump to background remains 10:1 while the hump-to-
lattice ratio is 1:1. Compared with the homogeneous case
[Fig. 3(a)], two features of the lattice shock are clearly
visible: the front does not propagate as fast, and the
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FIG. 1 (color online). Experimental setup. Light from a
532 nm laser is first split by a polarizing beam splitter. The
ordinarily-polarized beam passes through a Mach-Zehnder in-
terferometer (a) to induce a waveguide array in an SBN:75
crystal. The extraordinarily-polarized beam passes through a
modified Mach-Zehnder interferometer (b) to create a
Gaussian-on-background input shock profile. Light exiting the
crystal is imaged into two CCD cameras, one for the intensity in
position (x) space, one for the power spectrum in momentum (k)
space (obtained by performing an optical Fourier transform). To
excite a second-band Bloch background for a higher-band shock,
the plane wave arm in (b) is blocked and the interferometer in (a)
is partially polarized in the extraordinary direction.
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FIG. 2 (color online). Linear transmission spectrum in the
reduced Brillouin zone scheme, showing key propagation con-
stants and field profiles of representative modes. Modes num-
bered 1 and 3 are the initial background k-vectors, and the
arrows indicate the effect of defocusing nonlinearity.
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smaller-scale oscillations are lost. Both features are due to
the lattice potential. In the first feature, the propagating
front must overcome the periodic energy barrier as it
tunnels from site to site. In the second feature, the size of
the waveguide (potential well) sets the spatial scale for
oscillations.

Further insight into the basic shock behavior can be
obtained from the power spectrum, shown in Figs. 3(b)
and 3(d). For the homogeneous shock, there is a large peak
at k � 0, due to the plane wave background, surrounded by
two broader bands: an inner one representing large-scale
envelope modulations and an outer one representing the
small-scale oscillations in the shock tails. For the discre-
tized shock, the central peak remains, but two additional
side peaks appear, one each at the double-Bragg angles
	2kB � 	2�=D. The reasons for these can be seen in
Fig. 4, where we propagate each of the input components
separately through the nonlinear array. For the Gaussian
input beam [Figs. 4(a) and 4(b)], the output intensity
profile is a Gaussian exp��x2� modulated by the optical
lattice. The corresponding k-space output consists of two
separated Gaussian humps, resulting from the Fourier
transform cos�kBx� exp��x2� ! exp���k� kB�2=4� �
exp���k� kB�

2=4�. The nonlinear output spectrum of the
plane wave input is shown in Figs. 4(c) and 4(d). As can be
seen, this uniform input excites a broad spectrum of modes
across the first band, with dominant peaks at k � 0 and k �
	2kB. These latter peaks are a direct result of the lattice
periodicity, aided by the nonlinearity pushing down the

propagation constant (from mode 1 in Fig. 2 to mode 5).
Note that it is mode 5 from the third band, rather than mode
4 from the second band, because of the concave curvature
of the band; also, excitation of this mode sharpens the
edges within the waveguides (its dipole structure is
phase-shifted), rather than contributing an intensity dip in
the waveguide centers. The fact that the broad output peaks
at	kB from the Gaussian input [Fig. 4(b)] do not appear in
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FIG. 4 (color online). Output pictures of different initial in-
tensity profiles in optical lattices. (a,b) Bright Gaussian hump
with width 15 �m, intensity ratio 1:1 to the lattice; (c,d) plane
background wave, with intensity ratio 1:10 to the lattice;
(e,f) cosine background wave, with intensity ratio 1:10 to the
lattice. The period of the lattice is 30 �m. Left and right
columns show intensity in position (x) space and power spec-
trum in momentum (k) space, respectively.
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FIG. 3 (color online). Output pictures of dispersive shock waves in homogeneous and lattice systems. Left column: intensity in
position (x) space; right column: power spectrum in momentum (k) space. The left side of each panel shows experimental output
pictures, while the right side shows cross sections from experiment (top) and beam propagation simulation (bottom). For a Gaussian-
on-background input intensity ratio of 10:1, the pictures show shock waves (a,b) in homogeneous system; (c,d) against fundamental,
first-band background (modes 1� ); (e,f) against second-band, cosine background (mode 3). In (c–f), the period of the lattice is
30 �m. Note that in (f), the first Bragg peaks have been saturated to allow visualization of the less-intense, higher-order modes.
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the discretized shock spectrum [Fig. 3(d)] means that the
energy initially in the Gaussian hump has been effectively
coupled to the background light.

Understanding the energy transfer in the discretized
shock wave is complicated by the fact that the background
plane wave is not a pure eigenmode of the underlying
lattice. To consider a purer lattice shock wave, we launch
the initial Gaussian input against the cosine Floquet-Bloch
mode at the edge of the first Brillouin zone (mode 3 in
Fig. 2). This mode is excited by partially rotating the
polarization of the array beams [Fig. 1(a)] in the extra-
ordinary direction and recalibrating the intensity ratios.
The resulting shock wave is shown in Fig. 3(e). The
intensity peaks occur in the same location as the previous
lattice shock [Fig. 3(c)], as the intensity parameters are the
same in both cases. However, there is much more intensity
and higher spatial resolution in the shock tails, evidence of
coupling to higher-order modes. This coupling is shown
explicitly in the output power spectrum of Fig. 3(f). In this
case, the two high peaks at 	kB correspond to the initial
cosine mode. The spread around these peaks shows clear
coupling to other modes within the band. In contrast with
the broad first-band excitation in Fig. 3(d), there is a sharp
cutoff halfway through the Brillouin zone as the band
curvature changes sign. As before, though, the nonlinearity
couples the initial background mode to the next-higher
mode modulo 2�=D. These are the peaks appearing at an
additional 	2kB in Figs. 3(f) and 4(f).

As a final note, we would like to point out analogous
results possible in the temporal, rather than spatial, do-
main. In this case, the initial condition consists of a pulse
atop a background, e.g., in an optical fiber, with new modes
corresponding to new frequencies. For example, the blue-
shifted wavelengths produced in supercontinuum genera-
tion are dispersive [21]; if their intensity is high enough,
they will experience a repulsive nonlinearity which can
induce shock waves [22]. If the fiber also has a Bragg
grating [23], then the pulse dynamics will follow the
same lattice dynamics demonstrated here. In particular,
higher-band modes will be excited, leading to new possi-
bilities for parametric pumping, new frequency generation,
and control.

In conclusion, we have studied dispersive spatial shock
waves in optical waveguide arrays. Compared with the
homogeneous case, new features include an effective re-
sistance due to the lattice potential and a more complex
means of energy transfer due to the underlying Floquet-
Bloch modes. These modes give rise to a whole family of
lattice shock waves, just as with lattice solitons. Unlike gap
solitons, which are nonlinear localized modes with propa-
gation constants (energy eigenvalues) residing inside a
band gap, lattice shock waves have their propagation con-
stants pushed farther into the transmission band. This
facilitates mode coupling and energy dispersal, including
and especially the excitation of higher-band modes. This

was demonstrated for Gaussian input profiles defocused
against first-band and second-band backgrounds, but it is
clear that these are just representative examples of a much
richer range of lattice shock waves. When extended to the
temporal regime, for example, the dynamics suggest a
method of controlling the production of new frequencies,
e.g., pumping blueshifted, normally-dispersive waves in
supercontinuum generation. Hence, we expect many
more examples of shock-mediated photonic dynamics in
the near future.
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