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We present a protocol for the generation of superpositions of states with distinguishable field
amplitudes in an optical cavity by quantum nondemolition photon number measurements and coherent
feeding of the cavity.
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By suitably tailored optical pulses, it is possible to
coherently manipulate the states of small quantum systems
and, for example, to steer molecular processes and chemi-
cal reactions. Methods and concepts from this research
have spread to the field of quantum information theory
which, even with quantum error correction, requires a very
high degree of control [1]. As an example, quantum opti-
mal control techniques can substantially improve the per-
formance of elementary quantum gates with cold neutral
atoms [2]. Optimal control methods aim at manipulating a
few external parameters, e.g., currents and magnetic fields
of an atomic trapping potential, in such a way that an initial
state of the system evolves into the desired final state with
high fidelity. These techniques are open loop; i.e., they do
not exploit the knowledge that one can get by observing the
system and using the measurement outcome in a suitable
feedback. Even quite simple measurements display powers
that are hard to match with controllable interactions in
terms of the states accessible. For example, optical probing
of spin-polarized macroscopic atomic samples has been
used to enable atomic spin squeezing [3], entanglement,
quantum storage [4], and teleportation [5], and measure-
ments of the phase of light transmitted through a modest
cavity have been proposed as a means to project product
states of atoms in the cavity into entangled states and to
implement quantum computation [6].

The natural next step is to apply feedback continuously
in time using the information acquired in real time with the
measurements. The theory for continuous measurements
and feedback [7,8] combines the nondeterministic ele-
ments of quantum trajectories [9,10] with stochastic calcu-
lus. While these theories describe correctly the outcome of
a given measurement and feedback scheme, it is still an
open problem how one identifies reliable schemes for a
given task. A scheme for photon Fock state generation in a
cavity has been proposed recently by Geremia in Ref. [11]
and an analysis of the stability of the feedback by
Yanagisawa [12]. In this Letter we propose a strategy to
generate an equal superposition of two quantum-
mechanical states with distinguishable field amplitudes
j�i / jAi � jBi. Superpositions of states, which are well
localized in separate regions of the effective position-

momentum phase space of the field variables, have been
proposed as useful resources for quantum computation
[13] and quantum metrology [14]. Other methods for gen-
eration of such superposition states have been demon-
strated with light [15,16] and with trapped ions [14]. Our
principal idea is to apply the method described in Ref. [11]
to approach a target Fock state, occupying a ring in the field
amplitude phase space. Before we reach this state, the
phase space distribution is of crescent shape [see
Fig. 1(b)], and we feed coherent radiation into the cavity
to displace the state [Fig. 1(c)]. We subsequently start

FIG. 1 (color online). Time evolution of the HusimiQ function
for a single successful realization of the linear superposition
state (� � 1, � � 0, and n? � 10). In (f) the positive x compo-
nent of the Husimi Q function in (e) is magnified. The white ring
in (f) indicates a contour for the choice of displaced squeezed
state j�; �i in (5) that yields the best overlap with our state. The
lower panel shows the histogram of the fidelity for 135 simula-
tions with n? � 10, � � 0, and � � 1.
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probing the photon number again. In a pictorial represen-
tation, this scheme will select a quantum state with phase
space support at the overlap of a new Fock state ring and
the displaced crescent distribution, i.e., at two crossing
regions, and hence a linear superposition of two quantum
states with distinguishable field amplitudes may result
from the protocol [Fig. 1(d)].

A quantum nondemolition measurement of the photon
number n̂ in a single cavity mode can be accomplished by
measuring the phase shift of a probe laser field that couples
via a cross-Kerr effect to the cavity field when it passes
through an atomic gas inside the cavity. In our simulations,
we apply physical parameters of a dark-state mechanism in
the gas for effective coupling of the fields taken from
Ref. [11], but the formalism is general and describes also
the effective coupling based on the collective atomic mo-
tion inside the cavity, studied in Ref. [17]. The interaction
Hamiltonian is proportional to the product of the cavity and
the probe photon number operators, and it causes a phase
shift of the probe without exchanging photons with the
cavity field. It thus enables a nondemolition interaction,
which will gradually cause a narrowing of the photon
number state distribution. Our simulations will apply the
stochastic master equation technique [7,11], but in order to
explain this method and to get useful insight, it is worth-
while to establish a simple physical picture of the under-
lying probing dynamics. For this purpose, consider the
probing beam as composed of a succession of segments
of duration �t. The field is in a coherent state, and hence
factors in a product state of coherent states occupying each
segment of the beam. The continuous measurement on the
probe beam after interaction with the cavity field now
separates in the detection on each individual segment of
light, and, assuming an incident coherent state with a real
field amplitude, the phase shift is registered by balanced
homodyne detection of the phase-quadrature component
by means of interference with a local oscillator field.

The interaction between the cavity field and a single
segment of light is governed by the unitary operator U �
e�iM

0n̂n̂p , where M0 is a measure of the coupling strength.
We assume that each segment of the probe beam is in a
coherent state with a large mean number of photons ��t,
where � is the photon flux. Therefore, we can write âp �����������

��t
p

� â0p and expand the time evolution operator to
lowest order in the quantum fluctuations, U � e�i�n̂x̂p ,
where � � 2M0

����������
��t
p

, and x̂p � �â0p � â
0y
p �=2. The inter-

action implies a displacement of the probe p quadrature
proportional to the cavity photon number, and it is thus
useful to expand the joint cavity and probe field state in
the corresponding eigenstate basis, j�ini �

P
ncnjni�R

dpp�
�1=4e�p

2
p=2jppi, so that the state after interaction

becomes

 j�outi �
X
n

cnjni
Z
dpp��1=4e��pp��n�

2=2jppi: (1)

At this stage, pp is measured, an arbitrary outcome is
obtained according to the probability distribution,

 f�pp� � ��1=2
X
n

jcnj2e��pp��n�
2
; (2)

and the projection of (1) on the corresponding pp eigen-
state yields the updated state of the cavity field,

 j�c�pp�i �N ��;pp�
X
n

cne���n�pp�
2=2jni; (3)

where N ��;pp� is a normalization factor. When we
model continuous probing, the parameter � is infinitesi-
mal, and the effect of the interaction is merely to shift the
Gaussian probability distribution for pp by �hni. The
update of the cavity field state after measurement is also
infinitesimal due to the weak n dependence of the expo-
nential factor in (3). The random detection can be modeled
by a Wiener noise process, and the conditioned dynamics
under continuous measurements can be brought on the
form of an Îto stochastic master equation (SME) [7,11]:

 d�̂�t� � MD�n̂��̂�t�dt�
���������
M�

p
H �n̂��̂�t�dW�t�; (4)

with D�X̂��̂ 	 X̂ �̂ X̂y � 1=2�X̂yX̂ �̂��̂X̂yX̂� and
H �X̂��̂ 	 X̂ �̂��̂X̂y � Tr��X̂� X̂y��̂��̂. In (4) M �
2M02� denotes the measurement strength and � 2 �0; 1�
represents the quantum efficiency of the detection. The
innovation process, i.e., the difference between the actually
observed pp and its quantum-mechanical expectation
value with the current quantum state of the cavity field,
is described by a Wiener process [18], dW�t�. This differ-
ence is due to the shot noise in photodetection.

While the continuous measurement described above will
eventually collapse the system on one of the Fock states
present in the initial state, an important initial step of our
scheme is to evolve the system towards a given Fock state.
In Ref. [11], Geremia showed how to use the information
gradually obtained about n by the detection record to feed
coherent radiation into the cavity which increases or de-
creases the total photon number in a controllable manner.
This feedback is described by adding to (4) terms that
describes evolution under the Hamiltonian ĤFb�t� �
Gefx̂. Here x̂ � �â� ây�=2 is the cavity field quadrature
operator, G is the feedback gain factor, and ef is the feed-
back policy function, that we take to depend on appropriate
expectation values for the field. A natural choice for the
feedback policy function is ef�hn̂i� � n? � hn̂i, where n?

is the desired photon number [11]. The feedback
Hamiltonian causes a displacement of the field quadrature
operator p̂ � �â� ây�=�2i�. The feedback is proportional
to n? � hn̂i, and a state with negative hp̂i can be shifted to
larger negative values of hp̂i and hence typically a larger
hn̂i, if desired.

The functioning of our complete scheme is illustrated in
Figs. 1(a)–1(e). We find heuristically (for n? ’ 10) that the
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following protocol has a high success rate: At time t � 0
we start with the electromagnetic vacuum [1(a)] and we
apply the Geremia Fock state feedback protocol towards
n?, but only until the quadrature hp̂i< �n? � 1�1=4 �

������
n?
p

.
At that time the Husimi Q function looks like a crescent in
position-momentum phase space [1(b)]. The state is now
shifted towards the positive value hp̂i � 0:9

������
n?
p

[1(c)], and
at that time we start again to observe (without feedback)
the photon number in the system until the desired state is
found [1(d)]. Finally, the state is shifted to a symmetric
state around the center of the phase space [1(e)]. We stop
the action of the probing field when the maximum value of
the HusimiQ function along the p quadrature axis is below
some fixed value � (typically � 
 0:005).

The protocol does not work in every run of the simula-
tion or experiment. When we start the measurement on the
crescent shape state it sometimes happens that the state
collapses into a coherent state [19], and sometimes the
state dynamics becomes unstable. Since we have access
to the density matrix conditioned on the measurement
outcome, we know if the collapse takes place, and this
problem is partially solved by starting over again to gen-
erate a new crescent state with the number state feedback
generator. The instability problem is solved in our simula-
tions by applying a not too fast ramp of increased mea-
surement strengthM�t�, controlled in the experiment by the
probe laser power [11]. In our protocol it is important that
the probing laser is not switched on too fast, but it is also
important that it is switched off quickly to not perturb the
state when it has been created (tswitch-on � 200 ns,
tswitch-off � 1–2 ns for M � 2:12 MHz). Using these strat-
egies and allowing a maximal production time of 10M�1,
we observed a success probability for the production of a
quantum superposition state of 51% for n? � 5, 69% for
n? � 8, and 77% for n? � 10. Those results are obtained
in the ideal situation of perfect detector efficiency and no
cavity decay.

Our protocol does not automatically favor a superposi-
tion of coherent states, and we have investigated to which
extent the state produced can be written as a superposition
of two Gaussian, minimum uncertainty states in the
position-momentum phase space. As a way to quantify
the quality of the state, we use the optimal overlap fidelity

 F sup :� max
�;�;	
fh���; �;	�j�̂j���; �;	�ig; (5)

where j���;�;	�i�N ��;�;	��j�;�i�ei	j��;��i�,
and where �� rei
 is a squeezing parameter, ��x� iy
is a displacement parameter, and N ��; �;	� is a normal-
ization factor. The optimal superposition state parameters
��; �;	� can be determined from the detection record in
every run of the experiment. The results of 135 attempts to
produce such quantum superposition states are summa-
rized in the lower panel of Fig. 1, which provide an average
fidelity of about 90%. The success probability for n? � 10
does not change appreciably when a cavity decay rate of

� � 0:005M and finite detector efficiency � � 0:8 are
taken into account in our simulations, but the average
fidelity decreases to 70%. Note that in our family of test
superposition states we allow a relative phase 	. This
phase is known to the experimenter based upon the detec-
tion record, but it is not under straightforward experimental
control.

We will now explain our quantitative findings. We have
found numerically that the crescent-shaped state of
Fig. 1(b), which is produced with a high success probabil-
ity, is very close to the so-called crescent state of Ref. [20].
These states are eigenstates of the non-Hermitian operator
n̂� 2ij�jx̂ [20]. When j�j ! 0 the eigenstate is close to a
Fock state, while for j�j  1 it is a coherent state. We now
insert this state in Eq. (1), and we can semianalytically
follow the effect of probing, without applying any feed-
back. Since the measurement is of quantum nondemolition
type, Eqs. (1)–(3), discussed for infinitesimal temporal
segments, also apply for the accumulated effect of mea-
suring on the probe field for an extended period of time.
The parameter � is then larger, so that the probability
distribution (2) for the pp observable for a long time
interval is no longer well approximated by a Gaussian.
Instead, p̂p provides a weak measurement of n̂, which
according to Eq. (1) would become a projection in the
limit �! 1. Figure 2(a) shows a plot of the pp probabil-
ity distribution f�pp� obtained for a typical probing time,
corresponding to � � 0:2, for the crescent state. We iden-
tify three regions on the curves: (I) a maximum for small
pp, which is rather independent of n?, (II) a central region
where f�pp� decreases, and (III) a second maximum at
pp � n? followed by a rapid decay. Since p̂p measures the
cavity photon number n̂, the appearance of the three re-
gions can be qualitatively understood in terms of the n
distribution of the state or, more illustrative, in terms of the
Husimi Q- function. Fock states are ring-shaped in phase
space, and in Figs. 2(c) and 2(d) we plot the displaced
crescent state together with the region borders identified
from Fig. 2(a) for n? � 8 and for n? � 10. It is seen that
region (I) corresponds to the part of the state close to the
origin. By increasing n?, the weight in this region will
change only slightly. In region (II) the ‘‘arms’’ of the
crescent state are more or less radial in phase space while
in region (III) they come together again. When n? is
increased, the crescent state becomes larger and the border
between region (II) and (III) must move to larger radii, i.e.,
larger pp.

From the phase space plots it is to be expected that
region (II) is where a weak n measurement will cut out
two well separated portions of the HusimiQ function. This
is confirmed by Fig. 2(b), which shows the maximum value
of the postmeasurement HusimiQ function on the p axis as
a function of the measured pp. We see that, in the central
region (II), the state produced has very small values of the
Husimi Q function on the p axis, while the surrounding
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regions (I) and (III) are clearly not useful for our purpose.
Since the second maximum in Fig. 2(a) moves further to
the right with increasing n?, the central region (II) with the
successful outcomes becomes larger and this explains that
our protocol works better for larger n?.

It should be noticed that the semianalytical model based
on the crescent state [20] suggests that the optimal super-
position state parameters ��; �;	� be uniquely determined
by n?, the duration of the final probing stage, and the
corresponding integrated signal pp. In an experiment,
this is much easier than the numerical optimization based
upon the solution of the SME (4).

In conclusion, we have proposed to generate nonclass-
ical states of light in a cavity by using quantum measure-
ments and feedback. A protocol for production of highly
nonclassical superposition states with high fidelity and

success probability was proposed. We are currently work-
ing on the generalization of the ideas presented in this
Letter to the generation of similar states of atomic
ensembles.
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FIG. 2 (color online). (a) Probability distribution f�pp� for the
outcome of the measurement of the probing field quadrature p̂p.
(b) Maximum value of the Husimi Q function Q�x � 0; p�
plotted as a function of the measurement outcome pp. The
continuous (black) lines correspond to n? � 8 while the dashed
(red) ones correspond to n? � 10. In (c) and (d) are shown the
corresponding HusimiQ functions of the displaced crescent state
together with the region boarders identified from (a) and (b). In
all pictures � � 0:2 has been taken.
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