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We show that an extremal Kerr black hole, appropriately lifted to M theory, can be transformed to a
Kaluza-Klein black hole in M theory, or a D0–D6 charged black hole in string theory. Since all the
microstates of the latter have recently been identified, one can exactly reproduce the entropy of an
extremal Kerr black hole. We also show that the topology of the event horizon is not well defined in
M theory.
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Introduction.—The entropy of an extremal (four dimen-
sional) Kerr black hole is simply given in terms of its
angular momentum J:

 S � 2�jJj: (1.1)

Since J is naturally quantized, this formula is analogous to
the entropy of supersymmetric black holes, which is given
in terms of their integer normalized charges. String theory
has been very successful in exactly reproducing the en-
tropy of a variety of supersymmetric black holes by count-
ing appropriate microstates (see, e.g., reviews [1,2], and
references therein). We will show below that similar tech-
niques can be applied to extremal Kerr to reproduce (1.1).

In the early days of string theory, it was noted that the
bound on perturbative string states jJj � M2 looked like
the bound on Kerr black holes jJj � M2. However, the first
is really jJj � �0M2 while the second is jJj � G4M2, so an
extremal Kerr black hole is not related to a maximally
spinning string. (This is fortunate since a maximally spin-
ning string does not have enough states to reproduce the
entropy of a black hole.) Instead, we will see that the
microstates of Kerr can be described in terms of D-branes.

It might seem strange that a neutral black hole, like Kerr,
should be described in terms of charged objects such as D-
branes. However, the same approach was used successfully
last year to describe the entropy of certain neutral Kaluza-
Klein black holes [3]. The idea is simply that some neutral
black holes can be lifted to M theory in such a way that the
reduction to IIA string theory has both D0 and D6 charge.
One can then count the number of D0–D6 bound states.
This was shown to work for both static and rotating
Kaluza-Klein black holes [4] as long as they had sufficient
D0 and D6 charge after dimensional reduction.

In mapping Kerr to the class of Kaluza-Klein black holes
whose entropy is understood, we will use standard tools
such as T duality and extrapolations between weak and
strong coupling. The one key new ingredient is a trans-
formation that allows us to exchange the angular momen-
tum for a charge. Thus, in this context, angular momentum
turns out to be equivalent to charge. This is not the first
time that such an equivalence has been noted. For example,

it was shown in [5] that T duality on the Bañados-
Teitelboim-Zanelli black hole yields a charged black string
in which the charge of the black string is directly related to
the angular momentum of the black hole.

In the course of our analysis, we will see that the
topology of a black hole event horizon is not well defined
in M theory: Equivalent descriptions of a black hole can
have different topology. Of course, given a horizon with
topology S2n�1, one can always view the sphere as a circle
bundle over CPn and do T duality along the circle. This
changes the topology to CPn � S1. However, in only one
description is the horizon circle bigger than the string
scale, and that is the one for which the supergravity de-
scription (and hence topology) is valid. We will present a
different type of example where the supergravity descrip-
tion is valid for two topologically different black holes,
which nevertheless can be shown to be equivalent.

In the next section, we briefly review the microstate
counting for Kaluza-Klein black holes. In section three,
we show how this counting can be applied to an extremal
Kerr black hole and argue that horizon topology is not well
defined. The final section has some concluding comments.

Review of Kaluza-Klein microstates.—Five dimensional
neutral black holes, with translation invariance around the
compact fifth direction, are described by four parameters.
In terms of their reduction to four dimensions, these are the
mass M, angular momentum J, and electric and magnetic
charges Q, P. We are only interested in the extremal limit,
in whichM is a function of the other parameters. This limit
has qualitatively different behavior depending on whether
J is less than or greater than jPQj=G4. In this section we
review the microstate counting of slow-rotating extremal
Kaluza-Klein black holes in [3]. While this was extended
to the fast-rotating case in [4], to understand neutral Kerr
black holes we only need to consider Kaluza-Klein black
holes with J � 0. In this case, the mass and entropy are
given by [6]

 Mbh �
�Q2=3 � P2=3�3=2

2G4
; Sbh � 2�

jPQj
G4

: (2.1)
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If we consider the Kaluza-Klein black hole as a five
dimensional solution, multiplying by a constant (square)
T6 [with volume �2��6V6] gives us a vacuum solution to
M theory. Reducing to IIA string theory by treating the
Kaluza-Klein circle as the M theory circle, we get a black
hole with D0 and D6 charge. While D0–D6 states, like our
black hole, are nonsupersymmetric, there are quadratically
stable nonsupersymmetric D0–D6 bound states [7,8].
Recall that the M theory reduction yields R � gls and
that further T6 compactification gives G4 � g2l8s=8V6.
The charge quantization from Kaluza-Klein theory trans-
lates, in IIA language, to

 Q �
gls

4�V6=l
6
s�
N0; P �

gls
4
N6; (2.2)

where N0, N6 are integers representing the number of D0
and D6 branes. Note that in terms of these integers, the
entropy becomes simply Sbh � �N0N6.

Now supposeN0 � N6 � 4N. If we consider the T6 as a
product of three T2’s and T dualize along one cycle of each
T2, we get a configuration of four stacks of D3-branes
wrapping the diagonal cycles of the T2s. There are N
branes in each stack. If the D3-branes were wrapping the
fundamental cycles instead, this configuration would be
equivalent to a four charge black hole whose microscopic
entropy is known to be S � 2�N2. Since this is indepen-
dent of the moduli of T6, it seems clear that the entropy is
associated with the common intersection point of the
branes. So when we rotate the branes to wrap the diagonals,
the only change in the entropy is that there are now eight
intersection points on T6 (two on each T2). Thus the en-
tropy continues to agree: Sbranes � 8�2�N2� � �N0N6 �
Sbh.

More generally, if N0 � 4k3N, N6 � 4l3N, the dual
system has four stacks of branes, each wrapping the cycles
of the form x2 � �kx1=l (see Fig. 1). (One can properly
describe the system in terms of intersecting three-branes
only when N0 and N6 are of this form.) There are now
�2kl�3 intersection points in total, again giving the correct
entropy

 Sbranes � �2kl�32�N2 � �N0N6 � Sbh: (2.3)

The mass of the D3-branes, which is proportional to their
volume, also agrees with the mass of the black hole,

 Mbranes �
4N�k2 � l2�3=2V1=2

6

gl4s
� Mbh: (2.4)

Since each intersection point contains four stacks withN
branes, and the microscopic counting is valid only for large
charges, we require N � 1. While the restriction to spe-
cific forms of N0 and N6 seems constraining, it is worth
noting that we can obtain any value of P=Q we like by
varying V6 at fixed N, k, l.

Mapping Kerr to a Kaluza-Klein black hole.—We now
show how to map an extremal Kerr black hole with angular
momentum J0 into a nonrotating Kaluza-Klein black hole
with large N0, N6 whose entropy was counted above. We
proceed in three steps, which we will describe in terms of
the quantum numbers of the extremal Kaluza-Klein black
holes (N0, N6, J).

Step 1: Kerr! �N0 � 0; N6 � 1; J � J0�.—To begin,
consider extremal Kerr cross a line, that is, a rotating black
string. We now boost along the line (which, of course, does
not change the local geometry) and compactify to a circle
of radius R. The result is a rotating Kaluza-Klein black
hole with electric charge. It is important to note that, for
fixed angular momentum, the horizon area does not depend
on the boost. This is easily seen from the form of the
entropy for a rotating extremal black hole (this includes
both the fast- and slow-rotating cases) [4]

 Sbh � 2�
�������������������������������
jN2

0N
2
6=4	 J2j

q
(3.1)

while we haveN6 � 0. Specifically, we will boost to obtain
N0 � 1; i.e., we consider the minimum possible boost. (It
is important to note that such boosts are not symmetries of
the theory. Previous work using boosting in compact direc-
tions to understand black hole entropy include [9–12].
However, in these papers the boosts are very large and
used to relate Schwarzschild black holes to near extremal
charged black holes. In addition, the size of the circle must
be adjusted so that the entropy is unchanged. In contrast,
we do the smallest possible boost, and since our black
holes are extremal, the entropy is independent of the circle
size.) Now, we again take the product of this solution with a
T6 to get an M theory solution, and by dimensionally
reducing on the Kaluza-Klein circle get a IIA solution
with one unit of D0 charge. We can then T dualize along
the entire T6, and get a IIA solution with one unit of D6
charge. Now lifting this back to M theory, we find a
Kaluza-Klein black hole with one unit of magnetic charge.

An important consequence of these transformations is
that the topology of the horizon in M theory changes. Let
us suppose that the T6 is string scale (so it does not change
size under T duality) and only count macroscopic dimen-
sions. At weak coupling, the black hole has horizon topol-
ogy S2 and either D0 or D6 charge in the two equivalent
descriptions. At strong coupling, the original black hole
has topology S2 � S1 while the dual one has S3. This is
because, with N6 � 1, the M theory circle combines with

1

x 2

x

FIG. 1. The branes wrap a rational direction k=l of the torus
(here, k � 3, l � 1), so there are 2kl intersection points on each
T2.
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the S2 in the base to form a S3. Since T duality relates
equivalent descriptions, we see that the topology of the
horizon of a black hole is not well defined in M theory.
Under this equivalence, a graviton probe of the horizon
topology of one black hole maps into a Kaluza-Klein
monopole probe of the other.

Step 2: �N0 � 0; N6 � 1; J � J0� ! �N0 � 2J0; N6 � 1;
J � 0�.—A rotating Kaluza-Klein black hole with one unit
of magnetic charge can be thought of as a black hole sitting
on the tip of a Taub-NUT space. For large enough R, the
black hole looks like a five dimensional Myers-Perry black
hole [13]. The five dimensional angular momenta J1;2 in
the two orthogonal planes are related to N0, N6, J by [4]

 J1;2 �
N0N6

2
� J: (3.2)

Since N0 � 0, our solution has J1 � 	J2. A simple reflec-
tion will change the sign of J2. However, a black hole with
J1 � �J2 corresponds to one with J � 0 and N0 nonzero.
In other words, by reflecting the black hole before gluing it
into the Taub-NUT, we exchange the four dimensional
angular momentum with Kaluza-Klein circle momentum
(see Fig. 2). (This interesting fact has been noticed inde-
pendently by Emparan.) Since the reflection is clearly a
discrete symmetry of the Myers-Perry solution, this trans-
formation does not change the black hole.

It is important to note that such a reflection is really only
valid when N6 � 1, and it is only for one magnetic charge
that, in the large R limit, the transformation above is an
exact symmetry. Otherwise, our space does not become
asymptotically flat when R is large, but instead the asymp-
totic angular structure and the horizon topology are both
S3=ZN6

.
In the limit of large R, the mass is invariant under the

reflection. However, as we decrease R, the mass can

change. This is easily seen when R is small as the contri-
bution to M from N6 � 1 is then negligible. Before the
reflection, the black hole mass is like extremal Kerr with
M �

�����������
J=G4

p
�

���������������������������������
JRV6�2��7=G11

p
, whereas afterwards it is

an extremal electrically charged black hole with M �
N0=R. Not only do these scale differently with R, the
reflection symmetry translates angular momentum into
electric charge as N�new�

0 � 2J�old�.
We must, of course, be careful about taking the R! 1

limit, as this is the strong coupling limit of string theory.
However, as our Kaluza-Klein black holes and their Myers-
Perry limits possess an SL�2;R� �U�1� near-horizon sym-
metry [14], there is an attractor mechanism that allows us
to count microstates at weak coupling and extrapolate to
strong [15,16]. In fact, we can also use the argument [4]
that as there are flat directions in the dilaton’s effective po-
tential [17], only the entropy is attracted to the fixed weak-
coupling value, and the mass is not guaranteed to be fixed,
which clearly it is not. It is interesting to note that it is only
in the strong coupling limit that the masses do agree.

Step 3: �N0�2J0;N6�1;J�0�!�N0;N6 large J�
0�.—We have now transformed our Kerr black hole to a
Kaluza-Klein black hole with N0 large and N6 � 1. As
previously described, our understanding of D0–D6 micro-
states is in the T-dual intersecting D3-brane picture. For
this to be applicable, we require bothN0 andN6 to be large.
To achieve this, we first T- dualize on the entire T6 to
obtain a solution with N6 � 2J0 and N0 � 1. Geo-
metrically, the N6 charge corresponds to a quotient of the
S3 by identifying points along the Hopf fiber. If K divides
N6, we can pass to a K-fold covering space in which we
unwrap the Hopf fiber K times. In taking the covering
space, we want to keep the local geometry fixed; i.e., the
supergravity parameters Q, P are fixed as well as the 11
dimensional Planck length lp. Since lp � g1=3ls, R �
g2=3lp, so increasing R by a factor of K increases g by
K3=2 and decreases ls by K1=2. From (2.2) it follows that
N0 ! K2, N6 ! N6=K. The entropy, S � �N0N6, in-
creases by K as expected since the horizon area is K times
larger. The entropy of the black hole in the covering space
can now be reproduced exactly as shown in [3]. Since the
covering space geometrically is just K copies of the black
hole, the original black hole has S � �N0N6 � 2�J0,
which indeed agrees with the entropy of the Kerr black
hole we started with.

As further justification for this argument, we would like
to see that, in passing to the covering space, the microstates
can be divided into K identical, independent Hilbert
spaces. Starting with N0 � N6 � 4N with N � KL, the
K-fold cover has N0 � 4LK3, N6 � 4L. There are now
�2K�3 intersection points of the D3-branes, each giving rise
to identical, independent Hilbert spaces. So there is no
difficulty in dividing them into K groups.

Strictly speaking, the counting in section two requires
N0, N6 to be of the form N0 � 4k3N, N6 � 4l3N. This

FIG. 2. By taking R large, the geometry becomes a Myers-
Perry black hole at the tip of Taub-NUT. A simple reflection now
changes configuration (a) with N0 � 0 and J � 0 into (b) with
N0 � 0 and J � 0. Although it appears that the black hole has
been rotated by 90
, this is just an artifact of the projection down
to two dimensions.
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restricts the angular momentum of the original Kerr black
hole. One possibility is to take J0 � 4n3 for some large
integer n: Setting N � n2 and K � 2n, we have N0 �
K2 � 4N and N6 � 2J0=K � 4N. Of course, the integer
J0 for any macroscopic black hole is enormous, and one
can always find an integer n such that J0 � 4n3. (To be
precise, given a large integer J, there is an integer n such
that �J	 4n3�=J < 3=n.)

Comments.—We have shown that one can reproduce the
entropy of an extremal Kerr black hole by counting micro-
states in string theory. This was achieved by mapping the
Kerr black hole into a class of Kaluza-Klein black holes
whose entropy was recently counted. The map uses several
transformations that are commonly used when discussing
the entropy of supersymmetric black holes, such as dual-
ities and extrapolations between weak and strong coupling.
We have also included a discrete isometry of the black
hole. This apparently innocuous transformation allows one
to transform the angular momentum into a charge.

Our first step was to consider the product of the Kerr
black hole and S1, and add a small boost along the circle.
While the black hole entropy does not depend on the boost,
we do not have an independent argument that the number
of microstates does not depend on the boost. Strictly speak-
ing, we have counted the microstates of a rotating black
string with one unit of momentum. However, for a macro-
scopic amount of angular momentum, the four dimensional
reduction of this black string is essentially indistinguish-
able from a standard Kerr black hole.

As in the original Kaluza-Klein case, we still must rely
on the dual D3 description to count microstates. Counting
the microstates in the D0–D6 system directly is very
difficult, as it would require understanding the moduli
space of nonsupersymmetric D0–D6 states. One possible
method would be to understand instantonlike field configu-
rations in the D6 world-volume effective field theory, a six
dimensional Euclidean U�N6� super Yang-Mills theory.
(The configurations we are looking for are ones satisfyingR

TrF �
R

TrF ^ F � 0,
R

TrF ^ F ^ F / N0, and are at
least perturbatively stable.) However, it is worth pointing
out that while we do not have a D3 picture for arbitrary
values of N0 and N6, it is shown in [8] that the D0–D6
system is stable while not supersymmetric.

Several open questions remain. As mentioned above, the
entropy counting only applies to extremal Kerr with certain
values of J. Extending this to other values of J is related to
extending the Kaluza-Klein entropy counting to general
values of N0, N6. One could also ask about higher di-

mensional rotating black holes. The fact that all five di-
mensional extremal Myers-Perry black holes with non-
zero area can be obtained as large R limits of rotating
Kaluza-Klein black holes means that their entropy can be
counted in this manner. Understanding the entropy of six
and higher dimensional rotating black holes remains
open. Of course, one would also like to go beyond the
extremal limit to near extremal or nonextremal black holes.
Finally, the counting of states for Kerr that is described
here depends on a toroidal compactification. There should
be analogous ways to count microstates for other
compactifications.
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