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We propose and analyze a probabilistic scheme to entangle two spatially separated topological qubits in
a px � ipy superfluid using controlled collisions between atoms in movable dipole traps and unpaired
atoms inside vortex cores in the superfluid. We discuss how to test the violation of Bell’s inequality with
the generated entanglement. A set of universal quantum gates is shown to be implementable deterministi-
cally using the entanglement despite the fact that the entangled states can be created only probabilistically.

DOI: 10.1103/PhysRevLett.99.220502 PACS numbers: 03.67.Lx, 03.65.Ud, 03.67.Mn, 03.75.Ss

Introduction.—Topological quantum computation af-
fords the amazing possibility that qubits and quantum gates
may be realized using only the topological degrees of
freedom of a system [1]. Since these degrees of freedom,
by definition, are insensitive to weak local perturbations,
the resulting computational architecture should be free of
environmental decoherence. In a class of topological sys-
tems, the requisite (non-Abelian) statistical properties [2,3]
are provided by the presence of Majorana fermion excita-
tions described by the self-Hermitian operators �y � �.
These excitations have been shown to occur naturally at the
cores of vortices in a 2D spinless px � ipy superfluid or
superconductor [4–6], where the interacting fermions are
described by the many body Pfaffian wave function [2]. (It
seems likely, but remains to be verified, that this wave
function also describes the essential physics of the filling
fraction � � 5=2 fractional quantum Hall (FQH) system
[2,4]). It is encouraging that the spinless px � ipy super-
fluid of fermionic atoms is potentially realizable in an
optical trap tuned close to a p-wave Feshbach resonance
[7–9]. Our current work establishes the possibility of test-
ing Bell’s inequality in a p-wave fermionic superfluid on
the way to eventual universal topological quantum compu-
tation using vortices in such a system.

In a px � ipy superfluid, one can define a topological
qubit using a group of four vortices. Since the states of the
qubit are associated with the composite states of the four
spatially separated Majorana fermion excitations, they are
immune to local environmental errors. One can implement
some single-qubit gates by adiabatically moving (braiding)
one vortex around another within the same vortex complex
defining the qubit. Since the associated unitary transfor-
mations are purely statistical, there is, in principle, no error
incurred in these gating operations. However, such a braid
operation of one vortex from one qubit around another
from a different qubit fails to provide a two-qubit gate
[10]: the topological braiding operations allowed in a px �
ipy superfluid, as in its FQH Pfaffian counterpart, are not
computationally sufficient. Any composite state of the two
qubits, accessible by braiding one excitation around an-

other, can always be written as a product of the states of the
individual qubits [10]. Therefore, in light of its experimen-
tal relevance, it is important to examine the problem of
creating quantum entanglement in a px � ipy superfluid
via some other, possibly nontopological, means (without
incurring too much error) which, coupled with the avail-
able braiding transformations, may lead to universal quan-
tum computation. This is all the more important because
the other, more exotic, non-Abelian topological states, e.g.,
the SU�2� Read-Rezayi state [11], which can support uni-
versal computation via only the topologically protected
operations [12,13], are presently much beyond experimen-
tal reach. In the 5=2 FQH state, nontopological interfer-
ence of charge-carrying quasiparticle currents along
different trajectories [10,14,15] was proposed to entangle
qubits. Such an approach is not suitable for the superfluid,
because the non-Abelian excitations here are vortices,
which do not carry electric charge.

In this Letter, we show how to entangle two spatially
separated topological vortex qubits in a px � ipy super-
fluid by using ‘‘flying qubits’’ formed by atoms in mov-
able, external dipole traps. Controlled cold collisions
between an atom in the dipole trap and an atom at the
vortex qubit yield entanglement between the flying qubit
and the vortex qubit. Subsequently, a measurement on a
system comprising two flying qubits, entangled with two
different vortex qubits, collapses the two vortex qubits on
an entangled state. We show how to test the violation of
Bell’s inequality with the obtained entanglement. Finally,
we show how to deterministically implement a set of
universal quantum gates using the entangled state,
although the entanglement among the vortex qubits itself
can be generated only with a 50% success probability.

Topological qubit and flying qubit.—Consider a quasi-
two-dimensional (xy plane) px � ipy superfluid of spin-
polarized atoms [7–9], where vortices can be generated
through rotation or external laser fields. For each vortex,
there exists a zero-energy state that supports a Majorana
fermion mode � [2,5,6]. Two Majorana fermion states in
two vortices can be combined to create an ordinary fermi-
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onic state c � ��1 � i�2�=2. Therefore, a natural defini-
tion of a vortex qubit may be given in terms of the un-
occupied, j0i, or occupied, j1i � cyj0i, states of two
Majorana vortices. Here the state j1i contains an unpaired
Fermi atom inside the cores of the vortex pair (‘‘unpaired’’
as opposed to ‘‘paired’’ in a Cooper pair in the superfluid).
However, such a definition does not allow the superposi-
tion states such as �j0i � j1i�=

���
2
p

because they violate the
conservation of the total topological charge (the superfluid
condensate conserves the fermion number modulo 2). To
overcome this difficulty, a topological vortex qubit is de-
fined through two pairs of vortices, i.e., with the states
j0iV � j00i and j1iV � j11i. The superposition states,
�j0iV � j1iV�=

���
2
p

, are now allowed. Various intrapair and
interpair vortex braiding operations within a single qubit
give rise to various single-qubit gates [14,16] (e.g., qubit-
flip gate R, phase gate ���=2�, and the Hadamard gate H)
as depicted schematically in Fig. 1. Finally, the state of the
vortex qubit can be read out in the fj0iV; j1iVg basis by
fusing the vortices pairwise and detecting the number of
unpaired atoms in the core [6].

The flying qubit is constructed using an atom trapped in
the ground state of a movable optical dipole trap which is
itself formed by overlapping two identical laser beam
traps. One laser beam trap can then be adiabatically moved
out to split the composite trap into two traps, L, R; see
Fig. 2(a). This yields a superposition state for the atom,
�j01iLR � j10iLR�=

���
2
p

. Here L and R denote the left and
the right traps, respectively. Now, concentrating on the left
trap only, one can define the two states of the flying qubit,
j0iF � j01iLR, j1iF � j10iLR.

Entanglement between two topological qubits.—Using
flying qubits as auxiliary degrees of freedom, one can
generate entangled states between two vortex qubits. The
basic idea of the entanglement generation (EG) is illus-
trated in Figs. 2(b) and 2(c). Initially, a vortex qubit, V, is
prepared in the state j0iV . A Hadamard gateH is applied to
the qubit that transfers the state to j�iV � �j0iV �
j1iV�=

���
2
p

. By splitting a composite dipole trap in two parts
[Fig. 2(a)], the flying qubit F is prepared in the state
j iF � �j0iF � j1iF�=

���
2
p

. The flying qubit is then moved
near to the vortex qubit [Fig. 2(b)] so that the trapped
atom can collide with the unpaired Fermi atom, if any, in
the vortex pair. As shown below, such a collision process
yields a controlled phase gate, CP��� � exp�i�nVnF�,
between the flying qubit and the vortex qubit, where nV �

0; 1 is the number of unpaired Fermi atoms in the vortex
pair and nF � 0; 1 is the number of atoms in the flying
qubit. It is easy to see that the gate CP��� gives rise to the
transformation, j iFj�iV ! �j0iF�j0iV � j1iV� � j1iF�
�j0iV 	 j1iV�
=2, which can be transferred to an entangled
state

 j�iFV � �j0iFj0iV � j1iFj1iV�=
���
2
p
: (1)

Two vortex qubits can be entangled by a projection
measurement on the flying qubits of two entangled states
j�iF1V1

and j�iF2V2
. The dipole traps of the two flying

qubits are spatially merged and the atom number is mea-
sured through fluorescence signals [Fig. 2(c)]. From the
combined state j�iF1V1

j�iF2V2
, it is easy to deduce the

probabilities for the three possible outcomes: one atom
(50%), zero atoms (25%), and two atoms (25%). In the
last two cases, the states of the vortex qubits are projected
to j0iV1j0iV2

and j1iV1
j1iV2

, respectively, and are not en-
tangled. Therefore, in these cases the above procedure for
creating the entangled states, j�iF1V1

and j�iF2V2
, needs to

be repeated. However, in the case where the measurement
produces one atom, the quantum state of the two vortex
qubits is projected to the expected entangled state

 j�iV1V2
� �j0iV1j0iV2

� j1iV1
j1iV2

�=
���
2
p

(2)

with additional simple qubit-flip gates. Note that the above
entangled state can be created only with a 50% success
probability.

The remaining problem for the entanglement generation
is how to realize the controlled phase gate, CP���, between
the flying qubit and the vortex qubit. In Fig. 2(b), the center
of the dipole trap, r0�t� � z0�t�ez (with the core of vortex 1
as origin) is adiabatically brought from a distance d0ez
above the z � 0 plane to a distance zero, where the wave
packets of the dipole trapped atom and the unpaired atom
in the vortex pair �1; 2� overlap. The collision phases
between the atoms are different for different quantum
states of flying and vortex qubits with different energy,

 E�i; j� � EF�i� � EV�j� � �Ec�i; j�; (3)

where i; j � 0; 1 correspond to the quantum states j0i and
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FIG. 1. (a) Single-qubit flip gate R � 	i�x. (b) Single-qubit
phase gate ���=2� � diag�1; i�. (c) Hadamard gate H � 1��
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FIG. 2 (color online). (a) Construction of the flying qubit by
splitting a composite dipole trap into two traps. (b) Realization
of the gate CP��� by controlled collisions of atoms. (c) Two
flying qubits are merged into one and the number of atoms is
measured through fluorescence signals to create entanglement
between two topological qubits (see the text).
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j1i, respectively. EF�0� � 0 and EF�1� �
R
d3r���r	

r0�t���	@
2r2=2mF�VF�r	 r0�t��
��r	 r0�t���Eg are

the energies of the flying qubit in the states j0i and j1i,
respectively. VF�r	 r0�t�� is the harmonic potential of the
dipole trap, and ��r	 r0�t�� is the ground state wave
function of the dipole trapped atom with mass mF. Eg is
the interaction energy between the dipole trapped atom and
the paired BCS condensate. The second term EV�j� corre-
sponds to the energy of the fermionic state in the vortex
cores near the dipole trap. Because these states are the
solutions of the Bogoliubov–de Gennes (BdG) equations
with eigenvalue zero, EV�j� � 0 for j � 0; 1 [6].

The last term describes the collision energy [17] be-
tween dipole trapped atoms and unpaired Fermi atoms
and is nonzero only if both the flying qubit and the vortex
qubit are in the occupied state,

 �Ec�1; 1� �
g
2

Z
d3rj��r	 r0�t��j2�nV�r�: (4)

Here g is the collision interaction strength and �nV�r�
denotes the changes of the atom density from the BCS
condensate density. Using the standard harmonic trap wave
function for ��r	 r0�t�� and the wave function for the
zero-energy mode obtained from the solution of the BdG
equations, we find

 �Ec�1; 1� � @�� exp�	z2
0�t�= �a2
; (5)

where �a2 � a2
D � a

2
V , with aD and aV the oscillation

lengths for harmonic trapping potentials along the z direc-
tion of the dipole trap and the superfluid, respectively. @��
is the characteristic energy scale for the collision interac-
tion, which is determined by the collision interaction
strength g as well as the overlap between the wave func-
tions of the dipole trapped atoms and unpaired fermions in
the vortex pair �1; 2�. Note that the occupied zero-energy
fermionic state of the vortex pair �1; 2� is as likely to
contain extra atoms (corresponds to ��) as to miss atoms
(corresponds to �	) compared to the BCS condensate,
which yields �� � 	�	.

The state-dependent energy (3) yields a dynamic phase

 ’�i; j� � ’F�i� ��c�i; j�; (6)

where ’F�i� �
1
@

R
�
	� EF�i�dt is the single-qubit phase that

can be incorporated in the definition of the flying qubit, the
collision phase �c�i; j� �

1
@

R
�
	� �Ec�i; j�dt, and �� de-

note the time when the dipole trap center r0�t� moves from
and back to the initial place d0ez. Assuming that r0�t�
varies adiabatically as z0�t�=d0 � 	�exp�t2=�2

r� 	 1
=�1�
	 exp�t2=�2

r�
 with the parameter 	 � exp�	�2
i =�

2
r�, the

controlled collision phase is

 
 � �c�1; 1� � ���r
Z ��

	 ��
exp

�
	�	

e�t2 	 1

1� 	e�t2

�
d�t; (7)

where � � d2
0= �a2 and time in the above integration has

been scaled by �r. With a set of parameters for 6Li, aD �
aV � 0:4 �m, d0 � 10aD � 4 �m, �r � �i � 3:57=�,
� � 10�r, s-wave scattering length as 
 53 nm, and the
vortex core size �
 1 �m, we estimate �� 
�2��
6:6 kHz, �
 0:86 ms and the phase 
 � �� [i.e.,
exp�i
� � 	1]. Therefore, the controlled phase gate
CP��� can be realized.

Violation of Bell’s inequality.—The entangled state
j�iV1V2

between two remote vortex qubits can be used to
test the violation of the Clauser-Horne-Shimony-Holt
(CHSH) inequality, a variant of the Bell inequality [18].
Violation of the CHSH inequality would establish the
quantum nonlocality between the two vortex qubits. A
schematic diagram of this test is given in Fig. 3. The test
requires one to measure the vortex qubits along four differ-
ent directions: A1 � �V1

z � IV2 , A2 � �V1
x � IV2 , B1 �

	IV1 � ��V2
z � �

V2
x �=

���
2
p

, and B2� IV1 ���V2
z 	�

V2
x �=

���
2
p

.
After the measurements, two parties at V1 and V2 need to
communicate their results through the classical channel.
After repeated measurements, the statistical average L �
hA1B1i � hA2B2i � hA2B1i 	 hA1B2i is evaluated. The
quantum nonlocality of the entangled state yields L �
2
���
2
p

, which violates the CHSH inequality for local realism,
L � 2 [18].

The above four measurements correspond to measuring
the two vortex qubits in four different bases which are
eigenstates of the respective operators, A1: V1 on
fj0iV1

; j1iV1
g; A2: V1 on f�j0iV1

� j1iV1
�=

���
2
p
; �j0iV1

	

j1iV1
�=

���
2
p
g; B1: V2 on faj0iV2

� bj1iV2
; bj0iV2

	 aj1iV2
g;

B2: V2 on faj0iV2
	 bj1iV2

; bj0iV2
� aj1iV2

g, where a �
cos��=8�, b � sin��=8�. In the experiment, A1 is a fusion
measurement of the number of unpaired atoms in the
vortices [6]. Measurements A2, B1, and B2 can be imple-
mented by first applying suitable single-qubit operations to
the qubits to transfer their measurement bases to
fj0iV; j1iVg, following by fusion measurement A1. The
corresponding single-qubit operations are A2: H; B1:
H��ei�=4�H�2��=2�; B2: H��ei�=4�H�2�	�=2�, where
��ei�=4� � diag�1; ei�=4� is a single-qubit phase gate.

Universal quantum gates.—It is well known that a set of
quantum gates [10,14]

 H; ��exp�i�=4�
; ���z� (8)

are sufficient to simulate any quantum circuit, where
���z� � diag�1; 1; 1;	1� is the two-qubit controlled

Classical Communication Channel

(a)

(b)
HΛ Λ H( )4/π( )22 /π1B

EGiA jB

1A

FIG. 3 (color online). (a) Testing the violation of the CHSH
inequality. (b) The realization of the B1 measurement in (a).
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phase gate between two vortex qubits. Among these three
gates, the Hadamard gate H can be implemented using the
topological braiding operations. The single-qubit phase
gate ��ei�=4� can be realized by bringing two vortices 1
and 2 of a qubit close together [14], which yields a relative
dynamic phase ß �

RTp
	Tp

�Ez�t�dt between two states j0iV
and j1iV , with �Ez�t� as the energy splitting induced by the
tunneling between two vortices and 2Tp as the total tun-
neling period. A properly chosen tunneling process with
ß � �=4 yields the gate ��ei�=4�.

A controlled phase gate ���z� between two arbitrary
vortex qubits can be realized deterministically pro-
vided one has been able to create the entangled state j�i
between two vortex qubits. Considering two vortex qu-
bits G and Q (with the constituent vortices G1, G2, Q1,
Q2, etc.), we note that �GQ��z� � �G��=2��Q��=2��
exp�i��G1

�G2
�Q1

�Q2
=4�, where the last term involves

interaction among four vortices. The four-vortex operator
can be implemented using one additional vortex pair (�W1

,
�W2

) (initially prepared in state j0i) by noting that [19]

 exp�i��G1
�G2

�Q1
�Q2

=4� � 2U��P
�2�
� P

�4�
� ; (9)

where P�2�� � �1� i�Q1
�W1
�=2 and P�4�� � �I �

�G1
�G2

�Q2
�W1
�=2 are nondestructive measurements

which project the state of the vortices to the eigenstates
of the operators 	i�Q1

�W1
and �G1

�G2
�Q2

�W1
. U�� are

corresponding braiding operations for different measure-
ment results f��g.
P�2�� can be realized via a basis transformation method.

We exchange the vortices �Q1
and �W1

to transfer two
eigenstates of 	i�Q1

�W1
to fj00iQW; j11iQWg or

fj10iQW; j01iQWg, depending on the total topological
charge of the four vortices �Q1

, �Q2
, �W1

, and �W2
. We

then apply a fusion measurement on the vortex pair (�W1
,

�W2
) to determine whether the state is j0iW or j1iW , which

correspond to the eigenvalues �1 or 	1 of the projection
measurements P�2�� . After the fusion measurement, the
vortex pair (�W1

, �W2
) is recreated in the state j0iW . If

the result of the fusion measurement is the state j1iW , this
state is recovered by applying a single-qubit-flip opera-
tor R. Vortices �Q1

and �W1
are exchanged again to transfer

the states back to the eigenstates of 	i�Q1
�W1

. With this

basis transformation method, P�2�� can be performed non-
destructively.

However, such a basis transformation method does not
work for the measurements P�4�� because they involve
eigenstate measurements of four vortices. Recent work
[10] showed mathematically that P�4�� can be realized de-
terministically using the auxiliary entangled state j�i, for
which we provide a prescription in this Letter, coupled
with the braiding operations and the fusion measurements.
Here we refer to Ref. [10] for the mathematical details

of this measurement. Note that the measurement P�4�� can
be deterministically implemented, although j�i in our
scheme can be generated only with a 50% success proba-
bility. This is because j�i can be prepared using off-line
procedures that are not involved in the measurement pro-
cess. In addition, pairs with nonperfect entanglement can
be purified to pairs of nearly perfect entanglement through
off-line purification processes. Therefore, the controlled
phase gate ���z� can be implemented with a high accuracy
because the remaining processes involve only the braiding
operations and the fusion measurements.

In summary, we proposed and analyzed a scheme to
generate entanglement between two topological vortex
qubits in a px � ipy atomic superfluid with the assistance
of external flying qubits. We showed how to test the
violation of Bell’s inequality using the obtained entangle-
ment. Finally, we showed how to deterministically imple-
ment a set of universal quantum gates in the chiral p-wave
superfluid, which had hitherto remained a major concep-
tual problem, using the entanglement created between two
topological qubits.
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