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We present a general framework for understanding carrier-envelope phase (CEP) effects in a quantum
system interacting with an intense, short laser pulse. We establish a simple connection between the CEP
and the wave function that can be exploited to obtain the full CEP dependence of an observable given the
wave function at a single CEP. Within this framework, all CEP effects are interpreted as interference
between different photon amplitudes which, in turn, can be used to put limits on the pulse lengths and

intensities required to see significant CEP effects.
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Progress in producing and manipulating intense, few-
cycle laser pulses has made it possible to study laser-matter
interactions in a qualitatively new regime where the carrier
phase relative to the pulse envelope maximum-—the
carrier-envelope phase (CEP)—becomes an important pa-
rameter. It has been experimentally demonstrated, for in-
stance, that the CEP leads to an asymmetry in the
ionization of Kr atoms by linearly polarized infrared laser
pulses [1]. More recently, a similar asymmetry was found
in ionization of Rydberg states of Rb by few-cycle radio
frequency pulses [2]. Strong CEP effects have also been
predicted for dissociation of H,™ and HD™ [3] and have
recently been measured in dissociation of D, [4]. Many
other theoretical CEP studies have appeared [5—7], includ-
ing a prediction of weaker CEP effects in the excitation and
ionization of Cs atoms [8,9]. Theory has also shown CEP
effects in molecular isomerization [10], and high harmonic
generation has shown clear CEP dependence experimen-
tally [11].

Despite so much interest, CEP effects are not yet under-
stood theoretically in any general way. Qualitative explan-
ations have been given for many of the studies mentioned
above, and several of these support their explanations with
solutions of the time-dependent Schrodinger equation
(TDSE), but few have gone further. One interesting inter-
pretation [12] describes CEP effects in atomic ionization as
two-slit interference in the time domain. In the end, nearly
all CEP effects appear by breaking some spatial symmetry
present for longer pulses, generally resulting in more lo-
calized wave functions. In this respect, the CEP plays arole
much like the relative phase in long-studied two-color
schemes (see, for example, Ref. [13]).

Our goal is to present a general, rigorous formulation of
CEP effects that combines some ideas that have already
been applied in this context with some that have not. In
particular, our picture reveals a general, simple, and exact
relationship between the laser phase and the wave function
for short pulses that provides a unifying framework within
which previously identified CEP phenomena can be under-
stood both qualitatively and quantitatively.
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The key step in our approach is separating the rapid
oscillation of the carrier wave from the slower variation of
the pulse envelope by combining the 2D-time formalism
with a Floquet representation [14—-16]. This combination
allows the CEP to be eliminated by a simple transformation
that, in turn, permits one to calculate the complete CEP
dependence of any observable from the wave function
calculated for a single CEP. Recent work has used a
geometric transformation to accomplish the same goal
for circularly [5] or bi-circularly [6] polarized light.
While our formulation can also be applied to these cases,
we will assume here that the laser is linearly polarized for
notational simplicity.

We start from the TDSE, stressing the CEP, ¢, depen-
dence (atomic units are used unless stated otherwise),

W) = [y + V(e OT¥(@0. (D)

hy is the field-free Hamiltonian, and the laser-matter inter-
action is V(¢;1) = —d - E(r) cos(wt + ¢) in the dipole
approximation, with d the dipole operator, £(¢) the pulse
envelope, and w the carrier frequency. The -carrier-
envelope representation is reasonable for Gaussian pulses
so long as the pulse length is longer than roughly one cycle;
shorter pulses increasingly violate the requirement that
[E(1) cos(wt + @)dt =0 [17].

In the 2D-time representation, one introduces a second
time s, such that the interaction becomes

V(gp;s, t) = —d - E(s) cos(wt + @), (2)

and the TDSE, Eq. (1), becomes

9 )
<i$ + l@)‘l'(go; s, 1) =[hy + V(g;s, ) ][¥(ep;s,1). (3)

If W(ep;s, 1) satisfies (3), then the solution of (1) can be
written as U (¢; 1) = WU(p; s, 1)| ,—,. More details of the 2D-
time formalism can be found in Refs. [14,15].

Since Eq. (2) makes Eq. (3) periodic in ¢, we can utilize
the Floquet representation [15,16] to expand W(s, ) as
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The coefficients ¢, (¢; s) are the n-photon emission (n >
0) and absorption (n < 0) amplitudes. Substituting this ¥
into Eq. (3) yields

d
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1
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Propagating this equation to large s and evaluating the
resulting ¥ at s = ¢ yields the exact solution of Eq. (1)
from which any desired observable may be calculated.

The main advantage of Eq. (5) is that the CEP depen-
dence can be eliminated by a simple unitary transforma-
tion. To see this, we define the vector ®(¢; s) of n-photon
amplitudes ¢, (¢; s) and rewrite Eq. (5) as

i+ Blgss) = H(g; )P 5). ©)

Defining [U(@, @¢)ln = Smae™ ¢ ™%, it can be verified
that the ¢ dependence can be transformed out of H:

H (¢;5) = U(p, ¢o)H(pg; 5)UT (¢, @) (7)

This equation establishes our main result: namely, that the
complete CEP dependence of the wave function—and thus
any observable—can be obtained from

D (¢;5) = Ule, 00)P(@y; 5), ®)

given @ at a single CEP, ¢ = ¢ (hereafter, we will take
¢ = 0 for simplicity). Equation (8) implies that the wave
function in physical time (s = 1) is

V(psn) = > "¢, (0:1), ©)

n=—oo

where ¢,,(0; 1) = ¢, (0; 7). In practice, we only apply
this relation after the laser pulse is off at ¢ = ¢, since the
&, then evolve freely as ¢ ,(1) = e~ =g (1').

Since these results have been obtained under quite gen-
eral assumptions, we can conclude that all CEP effects can
be interpreted as interference between different n-photon
channels. Such an interpretation has been discussed before
for particular cases [2,8,18] as has the conjugate relation
(9) between CEP and photon number for two-color pulse
trains [18]. The present results, however, apply to all cases,
including single Gaussian pulses.

Because the CEP dependence is explicit in our wave
function, we can also find the explicit CEP dependence of
any given observable O. Using (9) for times ¢ > ¢, we can
write the expectation value of O as the Fourier series

(OXep, )= % + i[Re(ak)coskgo —Im(a,)sinke], (10)
=

where a(f) = 25 (b, (0;1)|0|,(0;1)). As the nota-
tion suggests, a; and (O) are, in general, time-dependent
depending on the specific observable under consideration.

Equation (10) shows immediately that the ¢-averaged
value of O is (O)(r) = «(z)/2. The variance of {(O)(¢, 1)
with ¢ —which provides, of course, a convenient measure
of the magnitude of the CEP effect—is

1/2

o) =[5 [0 —@ngo}” "= (3 ,2 i)
(an

Equation (10) also suggests that a Fourier transform of the
CEP dependence of O might provide a means to measure
the amplitude and phase of its matrix elements.

To demonstrate how our formulation works in practice,
we will consider a simple two-level system governed by

(o T e

where V(1) = Vye /7 cos(wt + ¢) and +2In27 is the
intensity FWHM pulse duration. Figure 1(a) shows the
excitation probability P,(¢) obtained by direct numerical
integration of Eq. (12) assuming a(—o0) =1 and
b(—oc0) = 0. The parameters correspond roughly to the
lso, and 2po, states of H," at a fixed internuclear dis-
tance of R = 4.56in a 7 fs (FWHM), 790 nm laser pulse of
peak intensity 1.1 X 10'* W /cm?.

Figure 1(a) also shows P, (¢) obtained from the solution
of Eq. (5) for ¢ = 0 and extended to all ¢ using Eq. (10)

Energy (a.u.)

FIG. 1 (color online). For the two-level system of Eq. (12)
with A = 0.066, w = 0.058, and 7 = 248: (a) Excitation proba-
bility from Eq. (14) (solid line) and from solving Eq. (12)
(circles). (b) Floquet Hamiltonian eigenenergies adiabatic in
V. The arrows indicate the main pathways for V, = 0.075
(vertical dashed line). (c) The CEP-averaged excitation proba-
bility P, and the magnitude of the CEP effect o, from Eq. (11).
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with O = |b)Xb|. Explicitly,
Py(p) = KbIW)I> = | > b, (¢') (13)
nodd
For the parameters used, we included n = —15, ..., 15 and
chose ¢ = 67 to ensure convergence. The n = =3, —1,

and 1 amplitudes dominate the rest, giving

P, (o) = 0.1299 — 0.073 07 cos2¢ — 0.005 864 cosd .
(14)

Since no approximations have been made besides truncat-
ing the series in Eq. (10), the essentially perfect agreement
between the direct solution of the TDSE and our 2D-time
solution is not surprising.

Besides providing a convincing demonstration of our
approach, this example also illustrates the utility of our
formulation for understanding CEP effects more qualita-
tively. For instance, how do the peak intensity and the pulse
duration affect the magnitude of CEP effects?

It is now clear that at least two n-photon components of
|h) must be populated after the pulse. Since this requires
multiphoton transitions, there must be a minimum intensity
that produces a clear CEP effect. Figure 1(b) illustrates this
point using the eigenenergies of the Floquet Hamiltonian
H, adiabatic in V. Starting from the state |a) with no
photons (|a), Ow) at V = 0 before the pulse, the system
follows all possible pathways along the curves as V in-
creases, with some probability of making nonadiabatic
transitions at each avoided crossing. As V decreases on
the trailing edge of the pulse, the avoided crossings are
again traversed with the same probabilities of transitions.
In fact, nonadiabatic transitions are necessary in order to
see CEP effects since these are the only ways to populate
multiple n-photon states in this picture.

These arguments allow us to understand why the b,
b_,, and b_; amplitudes are dominant for the parameters
of Fig. 1(b). The arrows in Fig. 1(b) trace the evolution
along the most important paths during the pulse.
Nonadiabatic transitions occur at the avoided crossings
near V = 0 and 0.1 on both the rising and falling edges
of the pulse, populating the n = 1, —1, and —3 states
which, in turn, interfere to give the calculated CEP depen-
dence. By the same argument, values of V|, greater than the
next crossing at 0.2 would populate a larger range of n,
leading to more complicated CEP dependence.

We can thus set a lower limit on the peak intensity: no
interference can happen if V|, does not approach the second
crossing. This observation is illustrated in Fig. 1(c) which
shows the magnitude of the CEP effect o,. Only for V|
above the second crossing is o, significant.

High intensities alone are not enough to produce CEP
effects, however. The field should also pass rapidly through
the crossings, otherwise the system follows the adiabatic
path and no population transfer occurs. This requirement

provides the means to understand the pulse duration de-
pendence of CEP effects.

As we have seen, the nonadiabatic second transition
limits the magnitude of the CEP effect. Although it does
not strictly apply here, we can use the Landau-Zener model
to roughly estimate this transition probability—and thus
the size of CEP effects—as a function of 7:

[Vial?

Py, =2e (1 —e 2™, §=_ 12
L Vi) — Vol

(15)

Here, V, is the coupling at the crossing and V;; = dV,;/dt,
which is generically proportional to 7~ !. Since o, is
proportional to the transition amplitude from Eq. (11),

e., la| « /Py, it follows that CEP effects should de-
crease exponentially with 7. This result is shown in
Fig. 2(a) together with o, calculated directly from
Egs. (5) and (11) for each 7. The striking qualitative
agreement between this simple estimate and the exact
result gives us confidence that our interpretation is correct.

It is important to emphasize that this 7 dependence is a
property of the combined laser-matter system and not the
laser pulse alone. Since CEP effects are the result of
interference, the greatest modulation will result when the
contributing amplitudes have similar magnitude. If one is
much larger, as at a resonance, then there will be compara-
tively small CEP effects [8]. Consequently, a judicious
choice of parameters can yield significant CEP effects
even for pulses that are much longer than one cycle, as
shown in Fig. 2(b). We see that even for pulses as long as
7= 15T, o, = 0.1 (compared with P, = 0.4).

Although this discussion has centered on a simple two-
level system, our conclusions about the influence of the
intensity and pulse length are quite general. Further, our
picture rigorously justifies the collective conclusions that
have emerged from other CEP studies to date—namely,
that a laser pulse must be both short and intense in order to
produce significant CEP effects.

Being general, our picture applies equally well to pro-
cesses with a continuum final state such as ionization and
dissociation. The CEP effects in H," dissociation, for

10° . . .
NS - VP (a) A = 0.066, Vo = 0.125
s 100} WW\M — Eq.(ID) 3
10° == : :
=012,V =
- memmm
10’2 mmm ﬁ\ﬁ Wive!
0 20
T/T

FIG. 2. Magnitude of the CEP effect o, for excitation in a two-
level system as a function of the pulse duration in units of the
laser period T = 27/ w for two different sets of parameters.
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FIG. 3 (color online). Nuclear kinetic energy release (KER)
spectra for each n-photon component ¢, (R, 1) for dissociation
of H,*(v = 0) in a 10 fs, 790 nm laser pulse. The insets show
the CEP effect on dissociation to p + H and H + p.

instance, appear as asymmetries between the experimen-
tally distinguishable p + Hand H + p channels (see insets
in Fig. 3) [3]. Since this asymmetry can only result from
interference of the 1so, and 2po, molecular channels, the
nuclei dissociating in these channels must contribute at the
same kinetic energy [2]. Further, our formulation shows
that each channel must also contribute with different num-
bers of photons—which is guaranteed by dipole selection
rules. Figure 3 shows the kinetic energy distributions for
the dominant n-photon states ¢,(R, t') from Eq. (5) in-
cluding only the lso, and 2po, channels and neglecting
nuclear rotation. For strong, short pulses, Fig. 3(b), the
laser bandwidth and intensity-induced shifting and broad-
ening of the initial state [2] lead to the requisite overlap of
nuclear wave packets. For weak or long pulses, Fig. 3(a),
this overlap vanishes.

As a practical matter, this approach requires the
n-photon amplitudes ¢, —either from Eq. (6) or by ex-
tracting them from solutions of the original TDSE (1). For
the simple problems described in this Letter, the increased
computational burden implied by Eq. (6) is not a barrier,
and the former route is preferable. For more complex
problems, this increase may simply not be possible. In
this case, solving Eq. (1) for several ¢ and Fourier trans-
forming the wave function using Eq. (9) will provide the
necessary amplitudes to use the rest of our formalism.
Moreover, given the relation (9) between n and ¢, the
number of ¢ required can be estimated a priori using the
physics of the problem.

In summary, we have presented a formalism for treating
and understanding CEP effects in short laser pulses. Our
approach allows the full CEP dependence of any observ-
able to be calculated from a single solution of the TDSE
in a Floquet representation. Further, it clearly establishes
the interpretation of short pulse CEP effects for any system
as interference between different n-photon pathways.
Because it is completely general, it incorporates previous

work as special cases while simultaneously providing the
qualitative framework to understand how the CEP effects
in these disparate cases stem from the same underlying
physics. Finally, the two-level example discussed demon-
strates how our formulation can be used to obtain estimates
of the pulse duration and intensity dependence, showing, in
particular, that CEP effects can persist to surprisingly long
pulse durations for a proper choice of parameters for the
laser-matter system.
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