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We report on measurements of dynamical suppression of interwell tunneling of a Bose-Einstein
condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the
lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC
freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking
parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions.
Furthermore, we have verified that, in general, the strong shaking does not destroy the phase coherence of
the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength
as the control parameter.
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Quantum tunneling of particles between potential wells
connected by a barrier is a fundamental physical effect.
While typically quantum systems decay faster when they
are perturbed, if the wells are shifted with respect to each
other by a time-varying linear potential (e.g., by periodi-
cally shaking them back and forth), the tunneling rate can
actually be reduced and, for certain strengths of the time-
varying potential, even completely suppressed [1,2].

Modifications of the dynamics of quantum systems by
applying periodic potentials have been investigated in a
number of contexts including the renormalization of Landé
g factors in atoms [3], the micromotion of a single trapped
ion [4], and the motion of electrons in semiconductor
superlattices [5]. In particular, theoretical studies of
double-well systems and of periodic potentials have led
to the closely related concepts of coherent destruction of
tunneling and dynamical localization [1,6]. In the latter,
tunneling between the sites of a periodic array is inhibited
by applying an oscillating potential, e.g., by shaking the
array back and forth (see Fig. 1), and, as a consequence, the
tunneling parameter J representing the gain in kinetic
energy in a tunneling event is replaced by jJeffj< jJj. In
a number of experiments, signatures of this tunneling
suppression have been observed [5,7,8], and recently dy-
namical localization and coherent suppression of tunneling
have been demonstrated using light propagating in coupled
waveguide arrays [9,10]. So far, however, an exact experi-
mental realization of the intrinsically nonlinear Bose-
Hubbard model [2] driven by a time-periodic potential
has not been reported.

In this Letter, we report on the observation of the dy-
namical tunneling suppression predicted in Refs. [2,11]
using Bose-Einstein condensates (BECs) in strongly driven
periodic optical potentials [12]. In contrast to other sys-
tems, the parameters of such optical lattices—potential
depth, lattice spacing, driving strength, and driving fre-
quency—can be varied over a wide range. Also, our sys-
tem allows us to observe the effects of the shaking both
through the real-space expansion of the BEC in the optical

lattice and by performing time-of-flight experiments, in
which the phase coherence of the BEC can be measured
and which allow us to verify that the tunneling suppression
occurs in a phase-coherent way.

Furthermore, BECs have an intrinsic nonlinear on-site
interaction energy (represented by U in Fig. 1), the inter-
play of which with the tunneling parameter J has been
shown to lead to the Mott-insulator quantum phase tran-
sition for a critical value of the ratio U=J [13,14]. It has
been theoretically predicted that, for a BEC in a shaken
optical lattice, this ratio can be replaced by U=Jeff and,
hence, that it should be possible to drive the system across
the quantum phase transition by varying the shaking pa-
rameter [2,11]. In this work, we demonstrate the feasibility
of the key ingredients of this scheme. In particular, we
show that, when tunneling in the shaken lattice is com-
pletely suppressed, the phase coherence of the BEC is
lost, in agreement with the physical picture of a sudden
‘‘switch-off’’ of the interwell coupling and a subsequent
independent evolution of the local phases due to collisions
between the atoms [15,16].
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FIG. 1. Suppression of tunneling by strong driving. The dy-
namics of a Bose-Einstein condensate in a periodic potential is
governed by the tunneling matrix element J and the on-site
interaction energy U (above). If the potential is strongly shaken,
tunneling between the wells is dynamically suppressed, leading
to a renormalized tunneling matrix element Jeff (below) but
leaving the interaction energy U unaffected.
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Our system consisting of a Bose-Einstein condensate
inside a (sinusoidally) shaken one-dimensional optical lat-
tice is approximately described [17] by the Hamiltonian
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where ĉ�y�i are the boson creation and annihilation opera-
tors on site i, n̂i � ĉyi ĉi are the number operators, and K
and ! are the strength and angular frequency of the shak-
ing, respectively. The first two terms in the Hamiltonian
describe the Bose-Hubbard model [13] with the tunneling
matrix element J and the on-site interaction term U. The
shaking of the lattice is expected to create a Floquet-
quasienergy spectrum, in which the tunneling matrix ele-
ment J is renormalized to an effective tunneling parameter
[2]

 Jeff � JJ 0�K0�; (2)

where J 0 is the zeroth-order ordinary Bessel function and
we have introduced the dimensionless parameter K0 �
K=@!.

In our experiment, we created BECs of about 5� 104

87-rubidium atoms using a hybrid approach in which
evaporative cooling was initially effected in a magnetic
time-orbiting potential trap and subsequently in a crossed
dipole trap. The dipole trap was realized by using two
intersecting Gaussian laser beams at 1030 nm wavelength
and a power of around 1 W per beam focused to waists of
50 �m. After obtaining pure condensates of around 5�
104 atoms, the powers of the trap beams were adjusted in
order to obtain elongated condensates with the desired trap
frequencies ( � 20 Hz in the longitudinal direction and
80 Hz radially). Along the axis of one of the dipole trap
beams, a one-dimensional optical lattice potential was then
added by ramping up the power of the lattice beams in
50 ms (the ramping time being chosen so as to avoid
excitations of the BEC). The optical lattices used in our
experiments were created using two counterpropagating
Gaussian laser beams (� � 852 nm) with 120 �m waist
and a resulting optical lattice spacing dL � �=2 �
0:426 �m. The depth V0 of the resulting periodic potential
is measured in units of Erec � @

2�2=�2md2
L�, where m is

the mass of the Rb atoms. By introducing a frequency
difference �� between the two lattice beams (using
acousto-optic modulators which also control the power of
the beams), the optical lattice could be moved at a velocity
v � dL�� or accelerated with an acceleration a � dL

d��
dt .

In order to periodically shake the lattice, �� was sinus-
oidally modulated with angular frequency !, leading to a
time-varying velocity v�t� � dL��max sin�!t� and, hence,
to an effective time-varying force in the lattice frame

 F�t� � m!dL��max cos�!t� � Fmax cos�!t�: (3)

The peak shaking force Fmax is related to the shaking
strength K in Eq. (1) by K � FmaxdL, and hence
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K
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�
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@
�
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The spatial shaking amplitude �xmax can then be written as
�xmax � �2=�2��!rec=!�K0dL, so for a typical shaking
frequency !=2� � 3 kHz we have �xmax � 0:5dL at
K0 � 2:4.

After loading the BECs into the optical lattice, the
frequency modulation of one of the lattice beams creating
the shaking was switched on either suddenly or using a
linear ramp with a time scale of a few milliseconds.
Finally, in order to measure the effective tunneling rate
jJeffj between the lattice wells (where the modulus indi-
cates that we are not sensitive to the sign of J, in contrast to
the time-of-flight experiments described below), we then
switched off the dipole trap beam that confined the BEC
along the direction of the optical lattice, leaving only the
radially confining beam switched on (the trap frequency of
that beam along the lattice direction was on the order of a
few hertz and hence negligible on the time scales of our
expansion experiments, which were typically less than
200 ms). The BEC was now free to expand along the lattice
direction through interwell tunneling, and its in situ width
was measured using a resonant flash, the shadow cast by
which was imaged onto a CCD chip. The observed density
distribution was then fitted with one or two Gaussians.

In a preliminary experiment without shaking (K0 � 0),
we verified that, for our expansion times, the growth in the
condensate width �x along the lattice direction was to a
good approximation linear and that the dependence of
d�x=dt on the lattice depth (up to V0=Erec � 9) followed
the expression for J�V0=Erec� in the lowest energy band
[18]
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which is a good approximation for our range of lattice
depths. This enabled us to confirm that d�x=dt measured
at a fixed time was directly related to J and, in a shaken lat-
tice, to jJeff�K0�j. We also verified that, for our parameters
U and J, the condensate was not in the self-trapping regime
[19]. The results of our measurements of jJeff�K0�=Jj for
various lattice depths V0 and driving frequencies ! are
summarized in Fig. 2. We found a universal behavior of
jJeff=Jj that is in very good agreement with the Bessel-
function rescaling of Eq. (2). We were able to measure
jJeff=Jj for K0 up to 12, albeit agreement with theory
beyond K0 � 6 was not as good, with the experimental
values lying consistently below the theoretical curve. For
the zeros of the J 0 Bessel function at K0 � 2:4 and 5.5,
complete suppression of tunneling was observed (within
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our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value ofK0 � 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J � 0:3
and @!=J � 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff�K0�=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2� * 3 kHz, to be com-
pared with the typical mean separation of �15 kHz be-
tween the two lowest energy bands at V0=Erec � 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V � �hmax � hmin�=�hmax �
hmin� of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and� 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V � 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time �deph of the condensate as a function of K0 for V0=Erec �

9 and !=2� � 3 kHz. The vertical dashed line marks the
position of K0 � 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec � h=dL.) Inset: Rephasing time after dephasing
at K0 � 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 � 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec � 6, !=2� � 1 kHz (squares), V0=Erec � 6,
!=2� � 0:5 kHz (circles), and V0=Erec � 4, !=2� � 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 � 2:0 and V0=Erec �
9 corresponding to J=h � 90 Hz.
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whereas for a strongly dephased condensate, V � 0. For
K0 & 2:2, the BEC phase coherence was maintained for
several tens of milliseconds, demonstrating that the tunnel-
ing could be suppressed by a factor of up to 10 over
hundreds of shaking cycles without significantly disturbing
the BEC.

This result is expressed more quantitatively in Fig. 3(a).
Here the condensate was held in the lattice (V0=Erec � 9),
and the shaking was switched on suddenly at t � 0 (we
found no significantly different behavior when K0 was
linearly ramped in a few milliseconds). Thereafter, V
was measured as a function of time, and the decay time
constant �deph of the resulting near-exponential function
was extracted. Apart from a slow overall decrease in �deph

for increasing K0, a sharp dip around K0 � 2:4 is visible.
In this region, jJeff=Jj< 1=20 and, hence, jJeff=hj &

10 Hz, which for our experimental parameters is compa-
rable to the on-site interaction U=h (we checked that the
widths of the on-site wave functions and hence U were
independent of K0 by analyzing the side peaks in the
interference pattern). This means that neighboring lattice
sites are effectively decoupled and the local phases evolve
independently due to interatomic collisions, leading to a
dephasing of the array [14,16]. By increasing the dipole
trap frequency (and hence U), we verified that �deph de-
creases as expected. We also studied a rephasing of the
BEC when, after an initial dephasing atK0 � 2:4, the value
of the shaking parameter was reduced below 2.4. The time
constant �reph of the subsequent rephasing of the conden-
sate (mediated by interwell tunneling and on-site colli-
sions) increased with decreasing Jeff [see the inset in
Fig. 3(a), where we compare �reph with the inverse of the

generalized Josephson frequency !�1
Josephson / J

�1=2
eff pre-

dicted by the two-well model [16,21]].
Finally, we investigated the dependence of �deph on the

shaking frequency ! [see Fig. 3(b)]. Interestingly, while
the tunneling suppression as observed in situ works even
for @!=J � 1, in order to maintain the phase coherence of
the condensate, much larger shaking frequencies are
needed. Indeed, for our system there exists an optimum
shaking frequency of @!=J � 30.

In summary, we have measured the dynamical suppres-
sion of tunneling of a BEC in strongly shaken optical
lattices and found excellent agreement with theoretical
predictions. Our results show that the tunneling suppres-
sion occurs in a phase-coherent way and can, therefore, be
used as a tool to control the tunneling matrix element while
leaving the on-site interaction energy unchanged (in con-
trast to the usual technique of increasing the lattice depth,
which changes both) and without disturbing the conden-
sate. This might ultimately lead to the possibility of con-
trolling quantum phase transitions by strong driving of the
lattice. In this context, it will be important to investigate
the question of adiabaticity when dynamically changing
the shaking parameter. Furthermore, our system also opens

up other avenues of research such as the realization of
exact dynamical localization using discontinuous shaking
waveforms [8,22] or tunneling suppression in superlattices
[23].
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Note added in proof.—Similar results have been ob-
tained in an array of double wells by Kierig and co-workers
[24].
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