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If n qubits were distributed between 2 parties, which quantum pure states and distributions of qubits
would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell’s theorem using only
single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs
for any number of qubits, and provide all distinct proofs up to n � 7 qubits. Remarkably, there is only one
distribution of a state of n � 4 qubits, and six distributions, each for a different state of n � 6 qubits,
which allow these proofs.
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The Greenberger-Horne-Zeilinger (GHZ) proof [1,2] of
Bell’s theorem [3] not only ‘‘opened a new chapter on the
hidden variables problem’’ [4] and made ‘‘the strongest
case against local realism since Bell’s work’’ [5], it also
inspired the quantum protocols for reducing communica-
tion complexity [6] and for secret sharing [7], and moti-
vated the study of multipartite entanglement [8]. The GHZ
proof provides a direct contradiction, using qubits and
without requiring inequalities, between the Einstein-
Podolsky-Rosen (EPR) criterion of elements of reality
[9] and perfect correlations predicted by quantum mechan-
ics. Mermin coined the name ‘‘all-versus-nothing’’ (AVN)
for proofs like GHZ’s, based onm perfect correlations such
that, if we assume elements of reality, m� 1 of them lead
us to the conclusion that it is the opposite of the one given
by the mth correlation [10].

However, while the original proof of Bell’s theorem
required only 2 separated parties, the GHZ proof required
3 because, when the qubits are distributed between 2
parties, there is no physical reason supporting the assump-
tion that all single-qubit observables appearing in the proof
have predefined results, since some of them do not satisfy
EPR’s criterion of elements of reality. EPR’s criterion
states that: ‘‘if, without in any way disturbing a system,
we can predict with certainty (i.e., with probability equal to
unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical
quantity’’ [9]. Applied to the bipartite case, this means that
it must be possible to predict with certainty the results of
measuring all observables appearing in the proof on Alice’s
(Bob’s) side from the results of spacelike separated mea-
surements on Bob’s (Alice’s) side.

The first 2-party AVN proof with qubits was introduced
in [11,12], then adapted for 2 photons [13], and finally
tested in the laboratory [14,15]. One of the difficulties of
experimentally implementing this 2-party AVN proof was
that it required 2-qubit local measurements [16]. The first
2-party AVN proof requiring only single-qubit measure-
ments was introduced in [17,18] and has been recently
demonstrated in the laboratory [19]. These bipartite AVN

proofs required 4-qubit states with 2 qubits each on Alice’s
and Bob’s sides.

The possibilities brought forth by recent developments
like 2-photon hyperentangled states (i.e., entangled in sev-
eral degrees of freedom) encoding 3 or more qubits in each
photon [20], and 6-photon 6-qubit states [21,22], naturally
lead to the following problem: If n qubits were distributed
between 2 parties, which are the quantum pure states and
possible distributions of qubits that allow a 2-party AVN
proof using only single-qubit measurements?

This problem is also related to the one of finding genu-
inely new bipartite communication complexity problems
with a quantum advantage (specifically, new schemes of
quantum pseudotelepathy [23]), and to the problem of
deciding which n-qubit states and distributions of qubits
allow bipartite EPR-Bell inequalities [24,25].

In this Letter we show a necessary and sufficient condi-
tion for the existence of bipartite AVN proofs using only
single-qubit measurements (BAVN hereafter) for any num-
ber of qubits. We then proceed to explicitly provide all
physically distinct BAVN proofs with up to 7 qubits.

A BAVN proof consists of an n-qubit quantum state and
a set of single-qubit measurements that satisfy two require-
ments: (a) Perfect correlations to define bipartite EPR’s
elements of reality. Every single-qubit observable involved
in the proof must satisfy EPR’s criterion of elements of
reality. (b) Perfect correlations that contradict EPR’s ele-
ments of reality. The observables that satisfy EPR’s condi-
tion cannot have predefined results, because it must be
impossible to assign them values that satisfy all the perfect
correlations predicted by quantum mechanics.

Perfect correlations are necessary to establish elements
of reality and to prove that they are incompatible with
quantum mechanics. Therefore, the states we are interested
in must be simultaneous eigenstates of a sufficient number
of commuting n-fold tensor products of single-qubit op-
erators. Suppose that A and B are single-qubit operators on
the same qubit. If they are different, they cannot be com-
muting operators. The only way to make the n-fold tensor
products be commuting operators is to choose A and B to
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be anticommuting operators. Therefore, in an AVN proof,
all the local operators corresponding to the same qubit
must be anticommuting operators. The maximum number
of anticommuting single-qubit operators is 3. Therefore,
without loss of generality, we can restrict our attention to a
specific set of 3 single-qubit anticommuting operators on
each qubit, e.g., the Pauli matrices X � �x, Y � �y, and
Z � �z. This leads us to the notion of stabilizer states. An
n-qubit stabilizer state is defined as the simultaneous
eigenstate with eigenvalue 1 of a set of n independent (in
the sense that none of them can be written as a product of
the others) commuting elements of the Pauli group, defined
as the group, under matrix multiplication, of all n-fold
tensor products of X, Y, Z, and the identity 1. The n
independent elements are called stabilizer generators and
generate a maximally Abelian subgroup called the stabil-
izer group of the state [26]. The 2n elements of the stabil-
izer group are called stabilizing operators and provide all
the perfect correlations of the stabilizer state.

Moreover, since any stabilizer state is local Clifford
equivalent (i.e., equivalent under the local unitary opera-
tions that map the Pauli group to itself under conjugation)
to a graph state [27], then we can restrict our attention to
graph states. A graph state [28] is a stabilizer state whose
generators can be written with the help of a graph. jGi is
the n-qubit state associated with the graphG, which gives a
recipe both for preparing jGi and for obtaining n stabilizer
generators that uniquely determine jGi. On one hand, G is
a set of n vertices (each of them representing a qubit)
connected by edges (each of them representing an Ising
interaction between the connected qubits). On the other
hand, the stabilizer generator gi is obtained by looking at
the vertex i of G and the set N�i� of vertices that are
connected to i, and is defined by

 gi � Xi
O

j2N�i�

Zj; (1)

where Xi, Yi, and Zi denote the Pauli matrices acting on the
ith qubit. jGi is the unique n-qubit state that fulfills

 gijGi � jGi; for i � 1; . . . ; n: (2)

Therefore, the stabilizer group is

 S�jGi� � fsj; j � 1; . . . ; 2ng; sj �
Y

i2Ij�G�

gi; (3)

where Ij�G� denotes a subset of fgigNi�1. The stabilizing
operators of jGi satisfy

 sjjGi � jGi: (4)

Equations like (4) are the ones that can be used to establish
elements of reality and prove their incompatibility with
quantum mechanics.

Although graph states are now ubiquitous in quantum
information theory due to their role as code words of
quantum error correcting codes [26], or in measurement-

based quantum computation [29], or due to their use in the
classification of entanglement [30], the first n > 2-qubit
graph states were the GHZ states and appeared in the
context of AVN proofs. It is then not that surprising that,
when we want to obtain BAVN proofs, we go back to graph
states. Indeed, DiVincenzo and Peres already showed that
the requirement (b) does not only occur for GHZ states, but
is also inherent to all standard code words of quantum error
correcting codes [31]. More recently, Scarani et al. have
shown that (b) holds for cluster states constructed on
square lattices of any dimension [32]. Furthermore, a
positive by-product of focusing on graph states is that
graph states associated with connected graphs have been
exhaustively classified. There is only one 2-qubit graph
state (equivalent to a Bell state), only one 3-qubit graph
state (the GHZ state), two 4-qubit graph states (the GHZ
and the cluster state), four 5-qubit graph states, eleven 6-
qubit graph states, and twenty-six 7-qubit graph states [28].

Therefore, our problem reduces to the following: If n
qubits were distributed between 2 parties, which n-qubit
graph states and possible distributions of qubits allow a
bipartite AVN proof using only single-qubit observables?

Note that, even considering only up to 7 qubits, there are
hundreds of states and possible distributions that could
potentially lead to a BAVN proof. Remarkably, this is not
the case.

Our starting point is the observation that requirement (b)
is satisfied by any graph state.

Lemma 1.—Any graph state associated with a connected
graph of 3 or more vertices leads to algebraic contradic-
tions with the concept of elements of reality (when each
qubit is distributed to a different party).

This result was anticipated in [30–32]. The interest of
the following proof is that it provides methods for obtain-
ing explicit examples of sets of perfect correlations satisfy-
ing (b).

Proof.—If qubit i is connected to qubit j, and j is
connected to k, there are two possibilities. One is that i is
not connected to k. Then, no theory exists that assigns
predefined values �1 or 1 to Yi, Zi, Xj, Yj, Yk, and Zk,
simultaneously satisfying the four equations

 

gigjjGi � jGi; (5a)

gjjGi � jGi; (5b)

gjgkjGi � jGi; (5c)

gigjgkjGi � jGi; (5d)

since gigj � gj � gjgk (where ‘‘�’’ means matrix multiplica-
tion) is equal, not to gigjgk (as expected in any theory with
predefined values), but to �gigjgk.

The other possibility is that qubit i is also connected to k.
Then, no theory exists that assigns predefined values�1 or
1 to Xi, Zi, Xj, Zj,Xk, and Zk, simultaneously satisfying the
four equations
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gijGi � jGi; (6a)

gjjGi � jGi; (6b)

gkjGi � jGi; (6c)

gigjgkjGi � jGi; (6d)

since gigjgk is equal to �gigjgk. �

Any set of equations associated with the stabilizing
operators containing a subset satisfying (b) also satisfies
(b). Therefore, given a graph state associated with a con-
nected graph of n > 3 vertices, there are thousands of
possible different subsets of equations satisfying (b).
Most of them involve the three Pauli matrices of all the
qubits, but some of them do not. However, in our BAVN
proofs it is relevant that the three Pauli matrices of each
and every one of Alice’s (Bob’s) qubits can be regarded as
EPR elements of reality, because we are interested in new
BAVN proofs involving new classes of graph states, not
those which are mere consequences of previously consid-
ered graph states of fewer qubits.

Therefore, the problem we have to solve is that of
finding out for which graph states and distributions are
all the three Pauli matrices for all the single-qubit elements
of reality in a bipartite scenario. A distribution of n qubits
between Alice and Bob is said to permit bipartite elements
of reality when, for each and every qubit, the results of
measuring two Pauli matrices on Alice’s (Bob’s) qubit j
can be predicted with certainty from the results of mea-
surements on Bob’s (Alices’s) qubits only.

Let us define the reduced stabilizer of Alice’s (Bob’s)
qubits as the one obtained by tracing out Bob’s (Alice’s)
qubits. A necessary and sufficient condition for bipartite
elements of reality is the following.

Lemma 2.—A distribution of n qubits between Alice
(who is given nA qubits) and Bob (who is given nB � n�
nA qubits) permits bipartite elements of reality if and only
if nA � nB, and the reduced stabilizer of Alice’s (Bob’s)
qubits contains all possible variations with repetition of the
four elements, 1, X, Y, and Z, which choose nA (nB),
without repeating any of them.

Proof.—Suppose that two Pauli matrices of Alice’s qubit
1, e.g., X1 and Y1, are elements of reality. Then each of
them must be predicted with certainty from Bob’s mea-
surements. That is, the reduced stabilizer of Alice’s qubits

must contain
 

X1 � 12 � . . . � 1nA ; (7a)

Y1 � 12 � . . . � 1nA : (7b)

Therefore, the third Pauli matrix of Alice’s qubit 1 must
also be an element of reality, since the product of (7a) and
(7b), which must belong to the reduced stabilizer of Alice’s
qubits, is

 Z1 � 12 � . . . � 1nA : (8)

The same must happen with the three Pauli matrices of
Alice’s qubits 2; . . . ; nA. Therefore, the reduced stabilizer
of Alice’s qubits must also contain
 

11 � X2 � 13 � . . . � 1nA ; (9a)

11 � Y2 � 13 � . . . � 1nA ; (9b)

11 � Z2 � 13 � . . . � 1nA ; . . . ; (9c)

11 � . . . � 1nA�1 � ZnA: (9d)

Moreover, the reduced stabilizer of Alice’s qubits must
contain all the possible products of Eqs. (7a), (7b), (8),
and (9a)–(9d); that is, all possible variations with repetition
of the four elements, 1, X, Y, and Z, choose nA, which are
4nA � 22nA . Furthermore, a similar reasoning applies to the
three Pauli matrices of each and every one of Bob’s qubits.
Therefore, the reduced stabilizer of Bob’s qubits must also
contain all the possible products of
 

XnA�1 � 1nA�2 � . . . � 1nB ; . . . ; (10a)

1nA�1 � . . . � 1nB�1 � ZnB: (10b)

But the total stabilizer has only 2nA�nB terms; therefore the
only possibility is that nA � nB. In addition, note that there
is no space for any of the variations with repetition to be
repeated. �

Most of the graph states cannot be used in BAVN proofs.
The remarkable point is that there are a few graph states
and distributions of qubits that satisfy the requirements of
Lemma 2, and therefore simultaneously fulfill (a) and (b).
Moreover, since Lemma 2 is a necessary and sufficient
condition, when we apply it to every possible distribution
of qubits of all possible graph states, we obtain a complete
classification of all possible BAVN proofs.
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FIG. 1. Bipartite distributions of the 4-qubit cluster state (graph state no. 4 according to Hein et al. [28]). Distribution 4a permits
bipartite elements of reality and BAVN proofs. Distribution 4b is physically equivalent (it is just relabeling the basis). Distribution 4c is
not equivalent to the other two, and does not permit bipartite elements of reality.
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With n < 8 qubits, and modulo single-qubit unitary
transformations, the only states and distributions of qubits
that allow BAVN proofs are the following. There is only
one graph state with 4 qubits:

 j 4ai �
1
2�j00ij�0 �0i � j01ij�0 �1i � j10ij�1 �0i � j11ij�1 �1i�;

(11)

where j00ij�0 �0i � j�z � 0i1 � j�z � 0i2 � j�x � 0i3 �
j�x � 0i4, with qubits 1 and 2 in Alice’s side, and qubits
3 and 4 in Bob’s. The state j 4ai corresponds to the graph
state no. 4 according to Hein et al. [28], with its qubits
distributed as in Fig. 1, distribution 4a. Note that any other
nonequivalent distribution of qubits does not allow BAVN
proofs (see Fig. 1). This BAVN proof is precisely the one
introduced in [17]. The new result is that the proof in [17] is
the only one with 4 qubits and single-qubit measurements.

Between 5 and 7 qubits, there are only 6 possible states
and distributions leading to BAVN proofs. All of them are
6-qubit states in which each party has 3 qubits. Their
corresponding graphs are summarized in Fig. 2. The ex-
plicit expressions of each state can be obtained from its
graph using (1) and (2). Two 6-qubit graph states have been
recently prepared in the laboratory [21,22], but none of

them allows BAVN proofs. A 6-qubit BAVN proof con-
stitutes an interesting experimental challenge for the near
future.
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FIG. 2. Bipartite distributions of the 6-qubit graph states that
permit bipartite elements of reality and BAVN proofs. The
graphs’ nomenclature follows Hein et al. [28], but the labeling
of the qubits is different: Qubits 1, 2, and 3 belong to Alice, and
qubits 4, 5, and 6 belong to Bob.
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